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Hydromagnetic Effects on Fluid Velocity Components and Internal Flow Separation in an Exponentially Diverging
Channel having Permeable Walls

M. Saiful Islam Mallik', M. Abdul Hakim Khan?, M. Shahabuddin®

Abstract: In this paper, we investigated the hydromagnetic steady flow of a viscous conducting fluid in a two-dimensional symmetrical slowly
varying exponentially diverging channel having permeable walls. For this investigation the combined effects of an externally applied
homogeneous magnetic field and permeable parameter on the development of velocity profiles and internal flow separation in the diverging
channel are observed. The solution for the flow governing non-linear differential equation is found using perturbation method together with
Pade” approximation technique. The investigation results reveal that internal flow separation development at moderately large Reynolds
number is suppressed by an increase in magnetic field intensity and decrease in permeable parameter. Furthermore, the behavior of velocity
profiles under the effect of magnetic field and permeable parameter are discussed.

Keywords: Diverging channel, magnetic field, permeable parameter, internal flow separation, Pade” approximants.

Introduction

The study of electrically conducting viscous fluid flowing through diverging channels under the influence of an external
magnetic field is not only fascinating theoretically, but also finds applications in mathematical modeling of several
industrial and biological systems such as magnetohydrodynamics (MHD) generators, plasma studies, nuclear reactors,
geothermal energy extraction, the boundary layer control in the field of aerodynamics, blood flow problems, etc. Several
simple flow problems associated with classical hydrodynamics have received new attention within the more general
context of MHD. A survey of MHD studies in the technological fields can be found in Moreau (1990). An investigation of
MHD steady flow in a channel with slip at the permeable boundaries was carried out by Makinde and Osalusi (2006).

The theory of flow of convergent-divergent channels has many applications in aerospace, chemical, civil, environmental,
mechanical and bio-mechanical engineering and also in understanding the flow of rivers and canals. The problem of
laminar flow in channels of slowly varying width permeable boundaries was investigated in Makinde (1995). A numerical
investigation of the study of hydromagnetic flows in a slowly varying exponentially diverging channel under the effect of
an externally applied homogeneous magnetic field was conducted by Makinde and Mhone (2006), using perturbation
method and Pade” approximation technique, Baker (1975). Furthermore, internal flow separation due to hydromagnetic
effects in a linearly diverging channel having permeable walls was found by Mallik ez al (2011).

It is well known that, the flow separates at for values of Reynolds number above a rather moderate critical value if the
cross-sectional area of a channel increases gradually with axial distance downstream. However the separated flow is not
unique. Borgas and Pedley (1997) and Makinde (1997, 1999) showed analytically that this non-uniqueness occurs at large
Reynolds number in channels that are sufficient slowly-varying for the flow to be governed by the boundary layer
equations, in which there is neither a transverse pressure gradient nor longitudinal viscous diffusion.

In the present paper, the steady hydromagnetic flows in a two-dimensional symmetrical exponentially diverging channel
having permeable walls under the influence of an externally applied homogeneous magnetic field have been investigated.
The objective of the study is to analyze the behavior of fluid velocity profiles and to determine numerically the effects of
the externally applied homogeneous magnetic field and permeable parameter on the development of internal flow
separation as the flow Reynolds number increases using perturbation method together with Pade” approximation
technique.
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Mathematical Formulation

Consider the fluid flow where the fluid has small electrical conductivity and the electromagnetic force produced is very
small under the effect of an externally applied homogeneous magnetic field. Let the fluid is flowing through a slowly
varying exponentially diverging symmetrical channel having permeable walls as shown in Figure 1. Let # and v be the
velocity components in the directions of x and y increasing respectively and b(x) defines the wall diverging geometrically.
Then, the governing equations for the two-dimensional steady flow, in terms of the vorticity (w) and stream-function ()
can be written as
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where = Iu dy1s the fluid flux rate across any section of the channel, k 1is the permeable
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parameter, V2 =9%/9x* + 9% /9dy?,By = (u. Hy ) the electromagnetic induction, u, the magnetic permeability, H, the

intensity of magnetic field, o, the conductivity of the fluid, p the fluid density and v is the kinematic viscosity coefficient.

Figure 1: Geometry of the problem.

The axial and normal fluid velocity components in terms of the stream function can be written in the following manner
__9y
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The inner surface of the wall is given by y=xb(x/L). Let b(x)=S (8 x/a) where S is the function of x, a is the

characteristic half- width of the channel, ¢ is a small dimensionless parameter that specifies the slow variation in the cross-
section of the channel defined asO< & =a/L<<1, where L is the channel characteristic length. In the limite — 0, the
channel is of constant width. The introduced dimensionless variables are
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Hence the reduced dimensionless governing equations with the boundary conditions, (neglecting the bars for clarity) can
be written as
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where the flow is considered in the boundary layer approximation or for channel with a small aspect ratio ¢, Re=€0Q/v is

the effective flow Reynolds number and H is the magnetic field intensity parameter or Hartmann number. For the
geometry of the channel under consideration, S is defined as S = ¢".

Perturbation Expansion
The equations (2.5)-(2.7) are non-linear in nature and therefore it is not possible to find their solutions exactly. However,
the solutions can be found in the form of power series in Re i.e.,
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Now substitute the expressions in (3.1) into (2.5)-(2.7) and collect the coefficients of like powers of Re. The resulting
equations are:
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It is difficult to obtain many terms of the solution series manually. So a MAPLE program has been written that calculates
successively the coefficients of the solution series. It consists of the following segments:



(1) Declaration of arrays for the solution series coefficients; y = array (0........25), o = array (0...... 25).

(i1) Input the leading order term and their derivatives i.e. wy .

(iii) Input the modeled channel geometry slope (i.e. dS/dx).

(iv) Using a MAPLE loop procedure, iterate to solve equations (3.5)-(3.7) for the higher order terms i.e. v, ®,, n =
1,2,3,...... .

(v) Compute the wall shear stress and the axial pressure gradient.

The first two terms of the solution for stream-function and vorticity are obtained as
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where # = y/S. The shear stress at the boundary of the channel is given by
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where G,y , O, Oxy are the usual stress components, i.e.,
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The subscripts (x, y) denote partial differentiation with respect to (x, y), respectively. The dimensionless form of wall
shear stress can be written as:
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for 0 <e<<1 we obtain
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Internal Flow Separation
We have investigated the solution behavior by algebraic programming language (MAPLE). The first 19 coefficients for
the above solution series have been obtained which represent the flow characteristics. The above series are reformed into

several diagonal Pade” approximants of order N =M +M as

4.1
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This method fails when the denominator of the fraction is evaluated near the zeros. By equating the numerator of equation
(4.1) to zero we have computed the Reynolds number at which separation occurs in the flow field (i.e. G — 0 ) for different
values of k and H at position S = 1on the channel, as shown in Table 1.



Table 1: Computations showing the Reynolds number for internal flow separation development in the diverging

channel at S = 1.

W H— 00 0.5 L0 L5
0.1 Re 693516 798599 1256802  22.62489
001 Re  7.52575 912779 1659612  29.58886
0.001 Re 742219 923728 1696519  29.59017
00  Re 793235 926564  17.08937  32.97352

Results and Discussions

Since the fluid is incompressible and viscous, the above mathematical analysis is very suitable for liquid. The combined
effects of homogeneous magnetic field and permeable parameter on the flow have been investigated. Flow separations
have been observed at a given position in the slowly varying exponentially diverging symmetrical channel having
permeable walls and computed numerically as shown in Table 1.

Figure 2 below shows the axial fluid velocity profile in the diverging channel. A parabolic axial velocity profile is
observed with maximum value at the channel centerline and minimum value at the walls. At the channel centerline and its
beside it is observed that the effect of increasing values of the magnetic field intensity (H) and permeable parameter (k) is
to decrease the magnitude of axial velocity profile. This finding is identical to those of Makinde and Mhone (2006), who
showed the axial fluid velocity profile in an exponentially diverging channel having rigid boundaries under the effect of
an external magnetic field.

Figure 3 below shows the normal fluid velocity profile in the diverging channel where the maximum value is observed
near the middle position of the channel centerline and the wall. But at the channel centerline and wall the minimum value
of the normal velocity profile is observed. Moreover, a general increase in the magnitude of normal velocity profile is
noticed with an increase in both magnetic field intensity and permeable parameter. These findings are identical to those of
Makinde and Osalusi (2006), who showed the normal fluid velocity profile in a channel with permeable boundaries under
the effect of external magnetic field, but they found a general decrease in the magnitude of normal velocity profile with an
increase in both wall slip and magnetic field intensity.
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Figure 2: Axial fluid velocity profiles for different values of Hand k; S=1and Re=1.
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Figure 3: Normal fluid velocity profiles for different values of H and k; S = 1 and Re = 1.

Figures 4(a)-4(b) represent the wall shear stress (G) with respect to flow Reynolds number at S = 1 in the diverging
channel. Generally, increased values of wall shear stress are observed for higher values of magnetic field intensity and
lower values of permeable parameter. Here it is interesting to note that the requirement of flow Reynolds number for the
development of internal flow separation increases as the magnetic field intensity increases and permeable parameter
decreases in magnitude, which is also clear from Table 1. Meanwhile, a further increase in magnetic field intensity may
suppress or totally prevent the development of internal flow separation in the diverging channel. These investigations
agree with those of Makinde and Mhone (2006), who found the results for exponentially diverging channel with rigid
boundaries. When k = 0.0 our results match with the study of them for different values of H. From Table 1 above and
Figures 4(a)-4(b), it is also clear that if flow Reynolds number is sufficiently high, internal flow separation development is
still possible at low magnetic field intensity. Hence, in order to prevent the occurrence of internal flow separation in the
diverging channel, the imposed external magnetic field intensity on the conducting fluid must be sufficiently high and the
value of the permeable parameter must be sufficiently low as well.
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Figure 4: Wall shear stress for different values of H and k; (a) when k = 0.1 and (b) when H = 1.

Conclusion

We investigated the combined effects of homogeneous magnetic field and permeable parameter on the steady flow in a
slowly varying exponentially diverging channel having permeable walls. Our results revealed that the effect of increasing
values of the magnetic field intensity and permeable parameter is to decrease the magnitude of axial velocity profile
around the centerline of the channel, and between the centerline and walls the normal velocity profile increases by both
magnetic field and permeable parameter. We also noticed that generally early separation occurred with an increase in
permeable parameter and decrease in magnetic field intensity. The number of coefficients of the solution series above 19
would give us more accurate values of the flow Reynolds number for the internal flow separation, however, both magnetic
field and permeable parameter have great influence on behavior of fluid velocity profiles and development of internal
flow separation in the diverging channel.
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