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Abstract : One possible structure of a PANDA fiber is proposed and the effects of hydraulic stress on the propagation properties are studied 

in this work. The proposed PANDA fiber can withstand up to 1500MPa external hydraulic stress while maintaining the fundamental mode of 

propagation. Effects of hydraulic pressure on several propagation properties such as birefringence, beat length, effective index, dispersion, 

cutoff wavelength, and bandwidth are shown in this paper. 
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1. Introduction 

The polarization state of light is of considerable importance in both coherent optical communication and fiber optic sys-
tems. Moreover, interference and delay differences between orthogonally polarized modes may cause polarization modal 
noise and polarization mode dispersion in birefringent fiber. Hence, there are several reasons why it may be desirable to 
use fiber that will permit light to pass through whilst retaining its state of polarization [1]-[2]. Polarization maintaining 
and absorption reducing fiber, which is called PANDA fiber, is one of the most commonly used high birefringent polariza-
tion maintaining fibers (PMFs) [1]-[9]. It has been shown that polarimetric and interferometric fiber-optic sensing devices 
composed of highly birefringent (HB) fibers are very effective for precisely registering a variety of measurands including 
temperature, strain and hydraulic stress [3]. The potential advantages of using fibers of these types are immunity to elec-
tromagnetic interference, suitability for adverse environments and effectiveness even in very high hydraulic stress condi-
tion [3]. The objective of this work is to analyze the effect of external hydraulic stress on fiber geometry and fiber charac-
teristics and determine the maximum amount of stress it can withstand.  
 
Modal birefringence is an important parameter, used to describe the polarization maintaining capability of single mode 
PMFs [10]. These fibers with circular symmetry about the core axis allow the propagation of two nearly degenerate modes 

with orthogonal polarizations. They are therefore bimodal supporting 
11

x
HE  and 

11

y
HE  modes, where the principle axes x 

and y are determined by the symmetry elements of the fiber cross section [1]-[4], [7]-[9]. Thus, the fiber behaves as a bire-
fringent medium due to the difference in refractive indices between two orthogonally polarized modes. 
  
Because of the stress applying zones (SAZs) and the cladding have different thermal expansion coefficients, it is antici-
pated that the birefringence in any PMF is sensitive to temperature variations [4], [7]-[9]. Different birefringent fibers and 
their stress dependent properties can be found in the literature [11]-[21]. In this study, it is found that birefringence is sen-
sitive to the change of hydraulic pressure. Here, the effect of hydraulic pressure on beat length, which describes the length 
required for the polarization to rotate 360 degrees, dispersion, effective index, and cutoff wavelength are also discussed. 
The authors’ intention is to propose a structure of PMF, which can be effectively used in under water communication, 
where external pressure is rather high. 
 

2. Structural and Physical Properties 
Fig. 1 shows the cross section of the PANDA fiber simulated in this work. Three different types of glass materials are used 
for three different regions of the fiber. These are LITHOTEC-CAF2 for cladding, N-FK51A for core and LITHOSIL-Q for 
SAZs. Different structural and physical parameters of the fiber are shown in Table 1. Pitch (Γ), the distance between the 
centers of core and SAZ is 24.70 µm. The different refractive indices at different wavelengths are obtained using Sell-
meier equation [1]-[2] 
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Here B1, B2, B3, λ1, λ2 and λ3 are the experimentally determined Sellmeier coefficients, and n is the refractive index at 
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wavelength λ. Table 2 shows the corresponding Sellmeier coefficients for three different materials of the fiber. 

 
 

Fig. 1. The cross section of the PANDA fiber. 
 

Table 1: Structural and Physical Parameters of the Fiber. 
Fiber region Core Cladding SAZ 

Radius (µm) 4.05 62.5 19.5 
Glass N-

FK51A 
LITHOTEC-

CAF2 
LITHOSIL-

Q 
Refractive index (at λ = 1.3µm) 1.47774 1.42722 1.44690 
Young´s modulus, E (N/m2) 73×109 76×109 72×109 
Poisson ratio, ν 0.302 0.26 0.17 
Thermal expansion coefficient, 
α (k−1) 

12.74 18.41 0.5 

 
Table 2: Sellmeier Coefficients of Fiber Materials. 

Glass 

materi-

als 

N-FK51A LITHOTEC-

CAF2 

LITHOSIL-Q 

B1 0.971247817 0.617617011 0.67071081 

λ1 (µm2) 0.00472301995 0.00275381936 0.00449192312 

B2 0.216901417 0.421117656 0.433322857 

λ2 (µm2) 0.0153575612 0.0105900875 0.0132812976 

B3 0.904651666 3.79711183 0.877379057 

λ3 (µm2) 168.68133 1182.67444 95.8899878 

 

3.   Methodology 
To obtain the polarization properties of the optical fiber under thermal and external stress the finite element method 
(FEM) [22] is used in this work. First the stress analysis is carried out using plane strain approximation, where the stress 
in the longitudinal direction is neglected, and the stress-optic effect is incorporated to find the change in refractive indices 
of fiber materials. Then with the new indices, optical analysis is carried out using a vector FEM to obtain the modal 
propagation properties. The fiber is assumed to be uniform in longitudinal direction and the cross section of the fiber is 
divided into many small Lagrange type triangular elements during the analysis. 
 

3.1 Stress Analysis 

To include the effect of thermal stress and external stress on propagation properties of the fibers, the stress analysis is car-
ried out using the plane strain approximation [7]. The system formulation is carried out for unknown displacements due to 
strain caused by the stresses over the cross section of the fiber. After solving the system for unknown displacements, one 
can easily find the stresses in different directions σx, σy, and σz and find the anisotropic change in refractive indices due to 
stress-optic effect. These anisotropic changes are calculated using stresses and stress-optic coefficients K1 and K2 as 
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Here n0 is the isotropic refractive index of the unstressed fiber material, and the nx, ny, and nz are the principal diagonal 
components of anisotropic refractive index tensor when the stress-optic effect is incorporated. The refractive index of un-
stressed fiber material at different wavelengths may be obtained using Sellmeier equation (1). 
 
3.2 Optical Analysis 

To carry out the optical analysis, the resulting anisotropic refractive indices as calculated by equation (2) are used. The 
modal analysis is carried out assuming that the fiber is uniform in z-direction and the wave propagates along the z-
direction with time and phase variation of ejωt and e−jβz, respectively. Here ω is the angular frequency and β is the propaga-
tion constant. An eigenvalue equation in terms of the magnetic field can be obtained from the Helmholtz equation 
 
 2 2

0([ ] )n k−∇ × ∇ × − =H H 0   (3) 

and is solved for modal effective index, neff = β/k0, as the eigenvalue. For optical analysis using [22], however, a module 
based on the perpendicular hybrid mode wave using transversal fields is used for finding the modal solutions. Once, equa-
tion (3) is solved, the effective indices, mode field distribution, and power distribution over the cross section of the fiber 
can be readily obtained for further processing to obtain various fiber properties. 

 
 
4.  Results and Discussions 
While performing the thermal stress analysis, stress distribution along the cross section of the fiber is observed as the Von 
Mises Stress (N/m2). Fig. 2 shows the distribution of displacement vectors in different regions of the fiber caused by the 
applied hydraulic and thermal stress on the fiber. It is obvious that displacement vectors are greater at the edge of cladding 
and the length of arrows gradually decreases towards the center of  the core. At the center of the core, the displacement is 
almost negligible. It implies that at the outer cladding surface, the stress would be highest. The core would experience the 
least stress. Fig. 3 shows the normalized power distribution of fundamental mode of propagation, where it can be observed 
that the maximum power is confined in the core region as expected. The optical analysis is carried out with the new re-
fractive indices after the stress analysis. 

                                 
Fig. 2. Distribution of displacement vector.                 Fig. 3. Power distribution over     the cross section.                                                                                  
 
Now, to observe the effect of external stress on the fiber properties, three hydraulic stress values of 0, 0.5 GPa and 1.0 
GPa are applied on the fiber, separately, on the fiber when the pitch is 24.7µm. The effect of wavelength variation on bire-
fringence is shown in Fig. 4. It is obvious that with no hydraulic stress (only thermal stress), birefringence varies from a 
value near 4×10−3 to 6×10−3 for wavelength variation in visible light range. For the stress of 0.5 GPa, the value is higher 
than 6×10−3, but for higher values of hydraulic stress, it decreases. Another worth mentioning fact is the non-varying na-
ture of birefringence with the change of wavelength at a particular hydraulic stress.  
 
Fig. 5 shows the change in beat length, which increases with the increase in applied hydraulic stress but with no hydraulic 
stress, the variation is random. For all cases, the tendency of change is upward with the increase in optical wavelength. A 
different scenario is observed for effective index, where it decreases with the increase in wavelength. Fig. 6 shows that 
effective index at a particular wavelength increases with the increase in applied hydraulic stress. 
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Fig. 4. Birefringence variation                  Fig. 5. Beat length variation  
with wavelength.                                       with wavelength. 
               

 
 

Fig. 6. Effective index variation with wavelength. 
 

Dispersion is another important parameter that must be taken into account for any optical fiber communication link. It is 
the broadening of light pulses, which is a critical factor limiting the quality of signal transmission medium [1]-[2]. The ef-
fects of hydraulic stress on dispersion with the change in wavelength are shown in Fig. 7. It can be seen that dispersion in-
creases with the increase in wavelength but does not have a regular pattern. It is found that dispersion without hydraulic 
pressure and with a smaller vaue of 0.5 GPa are almost equal in magnitude. But at a higher value of 1.0 GPa, dispersion 
changes significantly. The change is very much significant at higher wavelength, which means that after a certain amount of 
stress, efficiency of communication decreases. Polarization mode dispersion (PMD) is another type of dispersion, which 
plays an important role in determining the performance of any optical fiber communication link. It can be defined as the 
broadening of the input pulse due to a phase delay between input polarization states. Actually, birefringence causes one po-
larization mode to travel faster than the other, resulting in a difference in the propagation time called the differential group 
delay, which in turn, causes PMD [2]. PMD has a proportional relationship with group birefringence and inverse relation-
ship with the velocity of light. Fig. 8 depicts the effect of hydraulic stress on PMD. The PMD increases with the increase in 
wavelength when there is no hydraulic stress on the fiber. This variation is significant at lower wavelength but at higher 
wavelengths the variation is very small and insignificant. However, under hydraulic stress, the PMD is almost constant over 
the wavelength band considered here. 

              
 
Fig. 7.  Dispersion variation with wavelength.   Fig. 8. PMD variation with  

                       wavelength. 
 

Finally, the effects of hydraulic stress on several other factors, such as cutoff wavelength, bandwidth and maximum elec-
tric field are analyzed and discussed. Fig. 9 shows the effect of hydraulic stress on cutoff wavelength and bandwidth. Cut-
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off wavelength can be defined as the maximum wavelength that will propagate in an optical fiber or waveguide. It can be 
seen from the figure that cutoff wavelength increases with the increase in pressure, implying that with the increased stress, 
the information carrying possibility would reduce. So the lowest wavelength that would support the fundamental mode of 
propagation would shift towards higher value with stress. As for bandwidth, it can be seen that it is also increasing with 
the increase in pressure. Next, the effect of hydraulic stress on maximum electric field inside the fiber is shown in Fig. 10. 
It is observed that for both x and y polarized light, the maximum electric field intensity decreases with the increase in hy-
draulic stress.  

               
 

Fig. 9. Variation of cutoff wavelength and bandwidth with pressure. 
 

   
 

Fig. 10. Variation in maximum electric field with pressure 
 
Now, Fig. 11 shows a comparative analysis of normalized power flow for three distinct cases, i.e., fiber without stress, 
under only thermal stress, and under hydraulic stress. It can be seen that the power density is larger when there is no stress 
on the fiber. However, it decreases when there is thermal stress on the fiber. This further reduces, when additional hydrau-
lic stress is present. Table 3 shows normalized power and mode field diameter at different stress conditions. The table 
shows that mode field diameter is minimal when no stress was applied and highest when only thermal stress was applied 
on fiber. 

 
 

Fig. 11.  Comparison of normalized power flow  
  

Table 3 : Comparison of Normalized Power Flow.  

Cases Normalized 
power (W/m2) 

Mode field 
diameter (m) 

Without stress 1.373×104 4.96×10−6 
With thermal stress 1.281×104 5.12×10−6 
With hydraulic 
stress 

1.275×104 5.102×10−6 
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5. Conclusion 
In this work, a structure of PANDA fiber is proposed, and is simulated to obtain the propagation properties when the fiber 
is under external hydraulic pressure. It was found that up to almost 1500MPa, the fundamental mode power was confined 
at core with sufficiently high birefringence. Beat length increases with the applied pressure which is a disadvantage for 
under water communication but this property can be used for pressure sensor applications. Under stress, the dispersion of 
PANDA fiber shows flattened nature while the PMD remains constant over a wide range of wavelength.   The cut-off 
wavelength and the bandwidth of this fiber increase with the increase in external pressure. The significant changes in 
propagation properties indicate that careful consideration is needed during application of such birefringent fibers. More 
complex structures may also be analyzed in future. 
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