

Ahsanullah University of Science and Technology (AUST)

Department of Computer Science and Engineering

LABORATORY MANUAL

Course No.: CSE4238

Course Title: Soft Computing Lab

For the students of 4th Year, 2nd Semester of
B.Sc. in Computer Science and Engineering program

TABLE OF CONTENTS

COURSE OUTCOMES 1

PREFFERED TOOLS 1

TEXT/REFERENCE BOOK 1

ADMINISTRATIVE POLICY OF THE LABORATORY 1

LIST OF SESSIONS

SESSION 1: 2
Introduction to Numpy and Pytorch

SESSION 2: 13
Learning about Neural Network and its variations

SESSION 3: 31
Learning about Convolutional Neural Network

SESSION 4: 38
Learning about RNN and LSTM

SESSION 5: 42
Natural Language Processing (NLP) Basic Terminologies

SESSION 6: 59
Sentence Representation (NLP)

SESSION 7: 75
Project Evaluation

COURSE OUTCOMES

1. Demonstrate a comprehensive understanding of the fundamental concepts and

properties of soft computing methodologies such as fuzzy sets and logic, artificial

neural networks, probabilistic reasoning, and genetic algorithms.

2. Generate fundamental concepts used in Soft computing. The concepts of Soft

Computing, major technology trends driving Deep Learning and optimization

techniques using Genetic Algorithm (GA)

3. Develop fully connected deep neural networks, efficient (vectorized) neural

networks with key parameters of a neural networks architecture

4. Implement a variety of optimization algorithms, such as mini-batch gradient

descent, Momentum, RMSprop and Adam, and check for their convergence. Be

able to implement a neural network in PyTorch

5. Present the applications of neural networks and fuzzy sets in information

processing, decision making, and control systems in a clear and concise manner.

PREFFERED TOOL(S)

Jupyter Nootbook / Google Colaboratory

REFERENCES

BOOKS

1. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence (1st
Edition)
Authored by: Jyh-Shing Roger Jang, Chuen-Tsai Sun and Eiji Mizutani Publisher: Pearson

2. Dive into Deep Learning
Authored by: Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola

3. Fuzzy Logic with Engineering Applications, Third Edition
Authored by: Timothy J. Ross
Publisher: Wiley

ONLINE RESOURCES

1. https://www.deeplearningbook.org/

ADMINISTRATIVE POLICY OF THE LABORATORY

• Students must perform class assessment tasks individually without help of others.

• Viva for each program will be taken and considered as a performance.

• Plagiarism is strictly forbidden and will be dealt with punishment

Page 1 of 75

http://www.deeplearningbook.org/

 Session 01

 Goals:

 1. To know about NumPy Library

 2. To Know about Pytorch Framework

Page 2 of 75

Numpy is the core library for scienti�c computing in Python. It provides a high-performance multidimensional array
object, and tools for working with these arrays. To use Numpy, we �rst need to import the numpy package as
import numpy as np

Numpy

import numpy as np

a=np.array([[1,3],[2,4]])
print(np.min(a,1))

[1 2]

A numpy array is a grid of values, all of the same type, and is indexed by a tuple of nonnegative integers. The
number of dimensions is the rank of the array; the shape of an array is a tuple of integers giving the size of the
array along each dimension. We can initialize numpy arrays from nested Python lists, and access elements using
square brackets:

Arrays

a = np.array([1, 2, 3]) # Create a rank 1 array
print(type(a), a.shape, a[0], a[1], a[2])
a[0] = 5 # Change an element of the array
print(a)

<class 'numpy.ndarray'> (3,) 1 2 3
[5 2 3]

b = np.array([[1,2,3],[4,5,6]]) # Create a rank 2 array
print(b)

[[1 2 3]
 [4 5 6]]

b[0][0]

1

print(b.shape)
print(b[0, 0], b[0, 1], b[1, 0])

(2, 3)
1 2 4

Page 3 of 75

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fnumpy.org%2F

Numpy also provides many functions to create arrays:

a = np.zeros((2,2)) # Create an array of all zeros
print(a)

[[0. 0.]
 [0. 0.]]

b = np.ones((1,2)) # Create an array of all ones
print(b)

[[1. 1.]]

c = np.full((2,2), 7) # Create a constant array
print(c)

[[7 7]
 [7 7]]

d = np.eye(2) # Create a 2x2 identity matrix
print(d)

[[1. 0.]
 [0. 1.]]

e = np.random.random((2,2)) # Create an array filled with random values
print(e)

[[0.71565102 0.14143954]
 [0.68749501 0.07470517]]

Every numpy array is a grid of elements of the same type. Numpy provides a large set of numeric datatypes that
you can use to construct arrays. Numpy tries to guess a datatype when you create an array, but functions that
construct arrays usually also include an optional argument to explicitly specify the datatype. Here is an example:

You can read all about numpy datatypes in the documentation.

Datatypes

x = np.array([1, 2]) # Let numpy choose the datatype
y = np.array([1.0, 2.0]) # Let numpy choose the datatype
z = np.array([1, 2], dtype=np.int64) # Force a particular datatype

print(x.dtype, y.dtype, z.dtype)

int64 float64 int64

Basic mathematical functions operate elementwise on arrays, and are available both as operator overloads and as
functions in the numpy module:

Array math

Page 4 of 75

https://colab.research.google.com/corgiredirector?site=http%3A%2F%2Fdocs.scipy.org%2Fdoc%2Fnumpy%2Freference%2Farrays.dtypes.html

x = np.array([[1,2],[3,4]], dtype=np.float64)
y = np.array([[5,6],[7,8]], dtype=np.float64)

Elementwise sum; both produce the array
print(x + y)
print(np.add(x, y))

[[6. 8.]
 [10. 12.]]
[[6. 8.]
 [10. 12.]]

Elementwise difference; both produce the array
print(x - y)
print(np.subtract(x, y))

[[-4. -4.]
 [-4. -4.]]
[[-4. -4.]
 [-4. -4.]]

Elementwise product; both produce the array
print(x * y)
print(np.multiply(x, y))

[[5. 12.]
 [21. 32.]]
[[5. 12.]
 [21. 32.]]

Elementwise division; both produce the array
[[0.2 0.33333333]
[0.42857143 0.5]]
print(x / y)
print(np.divide(x, y))

[[0.2 0.33333333]
 [0.42857143 0.5]]
[[0.2 0.33333333]
 [0.42857143 0.5]]

Elementwise square root; produces the array
[[1. 1.41421356]
[1.73205081 2.]]
print(np.sqrt(x))

[[1. 1.41421356]
 [1.73205081 2.]]

* is elementwise multiplication, not matrix multiplication. We instead use the dot function to compute inner
products of vectors, to multiply a vector by a matrix, and to multiply matrices. dot is available both as a function in
the numpy module and as an instance method of array objects:

Important Note

Page 5 of 75

x = np.array([[1,2],[3,4]])
y = np.array([[5,6],[7,8]])

v = np.array([9,10])
w = np.array([11, 12])

Inner product of vectors; both produce 219
print(v.dot(w))
print(np.dot(v, w))

219
219

You can also use the @ operator which is equivalent to numpy's dot operator.

print(v @ w)

219

Matrix / vector product; both produce the rank 1 array [29 67]
print(x.dot(v))
print(np.dot(x, v))
print(x @ v)

[29 67]
[29 67]
[29 67]

Matrix / matrix product; both produce the rank 2 array
[[19 22]
[43 50]]
print(x.dot(y))
print(np.dot(x, y))
print(x @ y)

[[19 22]
 [43 50]]
[[19 22]
 [43 50]]
[[19 22]
 [43 50]]

Numpy provides many useful functions for performing computations on arrays; one of the most useful is sum :

x = np.array([[1,2],[3,4]])

print(np.sum(x)) # Compute sum of all elements; prints "10"
print(np.sum(x, axis=0)) # Compute sum of each column; prints "[4 6]"
print(np.sum(x, axis=1)) # Compute sum of each row; prints "[3 7]"

10
[4 6]
[3 7]

Page 6 of 75

You can �nd the full list of mathematical functions provided by numpy in the documentation.

Apart from computing mathematical functions using arrays, we frequently need to reshape or otherwise manipulate
data in arrays. The simplest example of this type of operation is transposing a matrix; to transpose a matrix, simply
use the T attribute of an array object:

print(x)
print("transpose\n", x.T)

[[1 2]
 [3 4]]
transpose
 [[1 3]
 [2 4]]

v = np.array([[1,2,3]])
print(v)
print("transpose\n", v.T)

[[1 2 3]]
transpose
 [[1]
 [2]
 [3]]

import numpy as np

example of numpy array
x = np.array([1, 2, 3])
print(x)

[1 2 3]

If is a vector, then a Python operation such as or will output s as a vector of the same size as
x.

x s = x + 3 s = 1
x

example of vector operation
x = np.array([1, 2, 3])
print (x + 3)

[4 5 6]

In fact, if is a row vector then will apply the exponential function to every
element of x. The output will thus be:

x = (, , . . . ,)x1 x2 xn np. exp(x)

np. exp(x) = (, , . . . ,)ex1 ex2 exn

import numpy as np

example of np.exp
x = np.array([1, 2, 3])
print(np.exp(x)) # result is (exp(1), exp(2), exp(3))

[2.71828183 7.3890561 20.08553692]

Page 7 of 75

https://colab.research.google.com/corgiredirector?site=http%3A%2F%2Fdocs.scipy.org%2Fdoc%2Fnumpy%2Freference%2Froutines.math.html

Any time you need more info on a numpy function, we encourage you to look at the o�cial documentation.

PyTorch is a python package built by Facebook AI Research (FAIR) that provides two high-level features:

Tensor computation (like numpy) with strong GPU acceleration
Deep Neural Networks built on a tape-based autograd (Automatic Gradient Calculation) system

Why Pytorch?

More Pythonic

Flexible
Intuitive and cleaner code
Easy to learn & debug
Dynamic Computation Graph (network behavior can be changed programmatically at runtime)

More Neural Networkic

Write code as the network works
forward/backward

What is Pytorch?

Checking PyTorch version

import torch

print(torch.__version__)

2.0.0+cu118

A PyTorch Tensor is basically the same as a numpy array: it does not know anything about deep learning or
computational graphs or gradients, and is just a generic n-dimensional array to be used for arbitrary numeric
computation.

The biggest difference between a numpy array and a PyTorch Tensor is that a PyTorch Tensor can run on either
CPU or GPU. To run operations on the GPU, just cast the Tensor to a cuda datatype.

A scalar is zero-order tensor or rank zero tensor. A vector is a one-dimensional or �rst order tensor, and a matrix is
a two-dimensional or second order tensor.

Introduction to Tensors

Page 8 of 75

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fdocs.scipy.org%2Fdoc%2Fnumpy-1.10.1%2Freference%2Fgenerated%2Fnumpy.exp.html
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2F

A torch.Tensor is a multi-dimensional matrix containing elements of a single data type.

torch.Tensor is an alias for the default tensor type (torch.FloatTensor).

torch.tensor([[1., -1.], [1., -1.]])

 tensor([[1., -1.],
 [1., -1.]])

x = torch.rand(5, 3)
print(x)

tensor([[0.7878, 0.7632, 0.5334],
 [0.3148, 0.8141, 0.5708],
 [0.8645, 0.3849, 0.7457],
 [0.5847, 0.7187, 0.6906],
 [0.1597, 0.6442, 0.0510]])

Converting numpy arrays to tensors
import numpy as np
torch.tensor(np.array([[1, 2, 3], [4, 5, 6]]))

tensor([[1, 2, 3],
 [4, 5, 6]])

Converting numpy arrays to tensors
np_values = np.array([[1, 2, 3], [4, 5, 6]])

t l t h f (l)
Page 9 of 75

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Ftensors.html

tensor_values = torch.from_numpy(np_values)

print (tensor_values)

tensor([[1, 2, 3],
 [4, 5, 6]])

A tensor of specific data type can be constructed by passing a torch.dtype

torch.zeros([2, 4], dtype=torch.int32)

tensor([[0, 0, 0, 0],
 [0, 0, 0, 0]], dtype=torch.int32)

The contents of a tensor can be accessed and modified using Python’s indexing and slicing notation:
x = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(x[1][2])

Modify a certain element
x[0][1] = 8
print(x)

tensor(6)
tensor([[1, 8, 3],
 [4, 5, 6]])

Use torch.Tensor.item() to get a Python number from a tensor containing a single value

x = torch.tensor([[1]])
print (x)

print(x.item())

x = torch.tensor(2.5)

print(x.item())

tensor([[1]])
1
2.5

x = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(x.size())

torch.Size([2, 3])

x.shape

torch.Size([2, 3])

Tensor addition & subtraction
x = torch.rand(5, 3)
y = torch.rand(5, 3)

print(x)
print(y)

Page 10 of 75

print(x + y)
print(x - y)

tensor([[0.9885, 0.6527, 0.4791],
 [0.5478, 0.9898, 0.3387],
 [0.7152, 0.6006, 0.5892],
 [0.2309, 0.0228, 0.5204],
 [0.7644, 0.6659, 0.4507]])
tensor([[0.6583, 0.9113, 0.5257],
 [0.1855, 0.2396, 0.9312],
 [0.4075, 0.2966, 0.8326],
 [0.7614, 0.1222, 0.7190],
 [0.2609, 0.6813, 0.6104]])
tensor([[1.6467, 1.5640, 1.0048],
 [0.7332, 1.2294, 1.2699],
 [1.1228, 0.8972, 1.4218],
 [0.9923, 0.1450, 1.2395],
 [1.0253, 1.3472, 1.0611]])
tensor([[0.3302, -0.2585, -0.0466],
 [0.3623, 0.7502, -0.5925],
 [0.3077, 0.3040, -0.2434],
 [-0.5304, -0.0994, -0.1986],
 [0.5035, -0.0153, -0.1597]])

Syntax 2 for Tensor addition & subtraction in PyTorch
print(torch.add(x, y))
print(torch.sub(x, y))

tensor([[1.6467, 1.5640, 1.0048],
 [0.7332, 1.2294, 1.2699],
 [1.1228, 0.8972, 1.4218],
 [0.9923, 0.1450, 1.2395],
 [1.0253, 1.3472, 1.0611]])
tensor([[0.3302, -0.2585, -0.0466],
 [0.3623, 0.7502, -0.5925],
 [0.3077, 0.3040, -0.2434],
 [-0.5304, -0.0994, -0.1986],
 [0.5035, -0.0153, -0.1597]])

Tensor Product & Transpose

mat1 = torch.randn(2, 3)
mat2 = torch.randn(3, 3)

print(mat1)
print(mat2)

print(torch.mm(mat1, mat2))

print(mat1.t())

tensor([[-0.8031, 0.2446, 0.7940],
 [-0.3707, 0.0465, 1.4219]])
tensor([[0.3405, -0.5077, 0.0098],
 [2.4161, 0.2791, -1.2381],
 [0.3947, 0.1022, -0.7730]])
tensor([[0.6309, 0.5572, -0.9245],
 [0.5475, 0.3465, -1.1604]])
tensor([[-0.8031, -0.3707],

Page 11 of 75

 [0.2446, 0.0465],
 [0.7940, 1.4219]])

Elementwise multiplication
t = torch.Tensor([[1, 2], [3, 4]])
t.mul(t)

tensor([[1., 4.],
 [9., 16.]])

Shape, dimensions, and datatype of a tensor object

x = torch.rand(5, 3)

print('Tensor shape:', x.shape) # t.size() gives the same
print('Number of dimensions:', x.dim())
print('Tensor type:', x.type()) # there are other types

Tensor shape: torch.Size([5, 3])
Number of dimensions: 2
Tensor type: torch.FloatTensor

Slicing
t = torch.Tensor([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],[[1, 2, 3], [4, 5, 6], [7, 8, 9]]])

Every row, only the last column
print(t[:, -1])

First 2 rows, all columns
print(t[:2, :])

Lower right most corner
print(t[-1:, -1:])

tensor([[7., 8., 9.],
 [7., 8., 9.]])
tensor([[[1., 2., 3.],
 [4., 5., 6.],
 [7., 8., 9.]],

 [[1., 2., 3.],
 [4., 5., 6.],
 [7., 8., 9.]]])
tensor([[[7., 8., 9.]]])

print(t[0,-2:-1, :1])

tensor([[4.]])

Page 12 of 75

 Session 02

 Goals:

 1. To know about Neural Network

 2. To Know about Different Variations of Neural Network

Page 13 of 75

MNIST Digit Recognizer (Neural Network)

One Layer FNN with Sigmoid Activation

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as dsets

Page 14 of 75

Our input size is determined by the size of the image (height x width) = (28X28). Hence the size of our input is
784 (28 x 28).

When we pass an image to our model, it will try to predict if it's 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. That is a total of 10
classes, hence we have an output size of 10.

Determining the hidden layer size is one of the crutial part. The �rst layer prior to the non-linear layer. This can
be any real number. A large number of hidden nodes denotes a bigger model with more parameters.

The bigger model isn't always the better model. On the otner hand, bigger model requires more training
samples to learn and converge to a good model.

Actually a bigger model requires more training samples to learn and converge to a good model. Hence, it is
wise to pick the model size for the problem at hand. Because it is a simple problem of recognizing digits, we
typically would not need a big model to achieve good results.

Moreover, too small of a hidden size would mean there would be insu�cient model capacity to predict
competently. Too small of a capacity denotes a smaller brain capacity so no matter how many training
samples you provide, it has a maximum capacity boundary in terms of its predictive power.

Input dimension:

Size of image:

Output dimension: 10

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

28 × 28 = 784

Hyperparameters

batch_size = 100
num_iters = 3000
input_dim = 28*28 # num_features = 784
num_hidden = 100 # num of hidden nodes
output_dim = 10

learning_rate = 0.1 # More power so we can learn faster! previously it was 0.001

Page 15 of 75

Device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

Loading MNIST Dataset

Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ./data/MNIST/raw/train-imag

Extracting ./data/MNIST/raw/train-images-idx3-ubyte.gz to ./data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ./data/MNIST/raw/train-labe

0%

Extracting ./data/MNIST/raw/train-labels-idx1-ubyte.gz to ./data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw/t10k-images

Extracting ./data/MNIST/raw/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw/t10k-labels

0%

Extracting ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw
Processing...
Done!
/pytorch/torch/csrc/utils/tensor_numpy.cpp:141: UserWarning: The given NumPy array is not writeable, a

9920512/? [00:20<00:00, 1332586.75it/s]

0/28881 [00:00<?, ?it/s]

1654784/? [00:18<00:00, 1026194.01it/s]

0/4542 [00:00<?, ?it/s]

'''
LOADING DATASET
'''
train_dataset = dsets.MNIST(root='./data',
 train=True,
 transform=transforms.ToTensor(), # Normalize the image to [0-1] from [0-255]
 download=True)

test_dataset = dsets.MNIST(root='./data',
 train=False,
 transform=transforms.ToTensor())

'''
MAKING DATASET ITERABLE
'''
num_epochs = num_iters / (len(train_dataset) / batch_size)
num_epochs = int(num_epochs)

train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
 batch_size=batch_size,
 shuffle=True) # It's better to shuffle the whole training datas

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
 batch_size=batch_size,
 shuffle=False)

print(len(train_dataset))
print(len(test_dataset))

60000
10000

Page 16 of 75

http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz

One Image Size
print(train_dataset[0][0].size())
print(train_dataset[0][0].numpy().shape)
First Image Label
print(train_dataset[0][1])

torch.Size([1, 28, 28])
(1, 28, 28)
5

Step #1 : Design your model using class

class NeuralNetworkModel(nn.Module):
 def __init__(self, input_size, num_classes, num_hidden):
 super().__init__()
 ### 1st hidden layer
 self.linear_1 = nn.Linear(input_size, num_hidden)

 ### Non-linearity
 self.sigmoid = nn.Sigmoid()

 ### Output layer
 self.linear_out = nn.Linear(num_hidden, num_classes)

 def forward(self, x):
 # Linear layer
 out = self.linear_1(x)
 # Non-linearity
 out = self.sigmoid(out)
 # Linear layer (output)
 probas = self.linear_out(out)
 return probas

'''
INSTANTIATE MODEL CLASS
'''

Page 17 of 75

model = NeuralNetworkModel(input_size = input_dim,
 num_classes = output_dim,
 num_hidden = num_hidden)
To enable GPU
model.to(device)

NeuralNetworkModel(
 (linear_1): Linear(in_features=784, out_features=100, bias=True)
 (sigmoid): Sigmoid()
 (linear_out): Linear(in_features=100, out_features=10, bias=True)
)

Unlike linear regression, we do not use MSE here, we need Cross Entropy Loss to calculate our loss before we
backpropagate and update our parameters.

criterion = nn.CrossEntropyLoss()

It does 2 things at the same time.

1. Computes softmax ([Logistic or Sigmoid]/softmax function)
2. Computes Cross Entropy Loss

Step #2 : Construct loss and optimizer

criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

Step #3 : Training: forward, loss, backward, step

'''
TRAIN THE MODEL
'''
iter = 0
for epoch in range(num_epochs):
 for i, (images, labels) in enumerate(train_loader):

 images = images.view(-1, 28*28).to(device)
 labels = labels.to(device)

 # Clear gradients w.r.t. parameters
 optimizer.zero_grad()

 # Forward pass to get output/logits
 outputs = model(images)

 # Calculate Loss: softmax --> cross entropy loss
 loss = criterion(outputs, labels)

 # Getting gradients w.r.t. parameters
 loss.backward()

 # Updating parameters
 optimizer.step()

Page 18 of 75

 iter += 1

 if iter % 500 == 0:
 # Calculate Accuracy
 correct = 0
 total = 0
 # Iterate through test dataset
 for images, labels in test_loader:

 images = images.view(-1, 28*28).to(device)

 # Forward pass only to get logits/output
 outputs = model(images)

 # Get predictions from the maximum value
 _, predicted = torch.max(outputs, 1)

 # Total number of labels
 total += labels.size(0)

 # Total correct predictions
 if torch.cuda.is_available():
 correct += (predicted.cpu() == labels.cpu()).sum()
 else:
 correct += (predicted == labels).sum()

 accuracy = 100 * correct.item() / total

 # Print Loss
 print('Iteration: {}. Loss: {}. Accuracy: {}'.format(iter, loss.item(), accuracy))

Iteration: 500. Loss: 0.6597447991371155. Accuracy: 86.5
Iteration: 1000. Loss: 0.41724541783332825. Accuracy: 89.48
Iteration: 1500. Loss: 0.4041314721107483. Accuracy: 90.35
Iteration: 2000. Loss: 0.3359662592411041. Accuracy: 90.97
Iteration: 2500. Loss: 0.22867584228515625. Accuracy: 91.64
Iteration: 3000. Loss: 0.24442128837108612. Accuracy: 91.95

2 ways to expand a neural network

Different non-linear activation
More hidden layers

Expanding Neural Network variants

One Layer FNN with Tanh Activation

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as dsets

Hyperparameters
batch_size = 100

Page 19 of 75

num_iters = 3000
input_dim = 28*28 # num_features = 784
num_hidden = 100
output_dim = 10

learning_rate = 0.1

Device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

train_dataset = dsets.MNIST(root='./data',
 train=True,
 transform=transforms.ToTensor(), # Normalize the image to [0-1] from [0-255]
 download=True)

test_dataset = dsets.MNIST(root='./data',
 train=False,
 transform=transforms.ToTensor())

num_epochs = num_iters / (len(train_dataset) / batch_size)
num_epochs = int(num_epochs)

train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
 batch_size=batch_size,
 shuffle=True) # It's better to shuffle the whole training datas

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
 batch_size=batch_size,
 shuffle=False)

class NeuralNetworkModel(nn.Module):
 def __init__(self, input_size, num_classes, num_hidden):
 super().__init__()
 ### 1st hidden layer
 self.linear_1 = nn.Linear(input_size, num_hidden)

 ### Non-linearity
 self.tanh = nn.Tanh()

 ### Output layer
 self.linear_out = nn.Linear(num_hidden, num_classes)

 def forward(self, x):
 # Linear layer
 out = self.linear_1(x)
 # Non-linearity
 out = self.tanh(out)
 # Linear layer (output)
 probas = self.linear_out(out)
 return probas

model = NeuralNetworkModel(input_size = input_dim,
 num_classes = output_dim,
 num_hidden = num_hidden)
To enable GPU
model.to(device)

Page 20 of 75

criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

iter = 0
for epoch in range(num_epochs):
 for i, (images, labels) in enumerate(train_loader):

 images = images.view(-1, 28*28).to(device)
 labels = labels.to(device)

 # Clear gradients w.r.t. parameters
 optimizer.zero_grad()

 # Forward pass to get output/logits
 outputs = model(images)

 # Calculate Loss: softmax --> cross entropy loss
 loss = criterion(outputs, labels)

 # Getting gradients w.r.t. parameters
 loss.backward()

 # Updating parameters
 optimizer.step()

 iter += 1

 if iter % 500 == 0:
 # Calculate Accuracy
 correct = 0
 total = 0
 # Iterate through test dataset
 for images, labels in test_loader:

 images = images.view(-1, 28*28).to(device)

 # Forward pass only to get logits/output
 outputs = model(images)

 # Get predictions from the maximum value
 _, predicted = torch.max(outputs, 1)

 # Total number of labels
 total += labels.size(0)

 # Total correct predictions
 if torch.cuda.is_available():
 correct += (predicted.cpu() == labels.cpu()).sum()
 else:
 correct += (predicted == labels).sum()

 accuracy = 100 * correct.item() / total

 # Print Loss
 print('Iteration: {}. Loss: {}. Accuracy: {}'.format(iter, loss.item(), accuracy))

Iteration: 500. Loss: 0.21413597464561462. Accuracy: 90.9
Iteration: 1000. Loss: 0.3538866341114044. Accuracy: 92.31

Page 21 of 75

Iteration: 1500. Loss: 0.15589021146297455. Accuracy: 93.24
Iteration: 2000. Loss: 0.3556366264820099. Accuracy: 93.98
Iteration: 2500. Loss: 0.2028314620256424. Accuracy: 94.64
Iteration: 3000. Loss: 0.333248496055603. Accuracy: 95.05

One Layer FNN with ReLU Activation

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as dsets

Hyperparameters
batch_size = 100
num_iters = 3000
input_dim = 28*28 # num_features = 784
num_hidden = 100
output_dim = 10

learning_rate = 0.1

Device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

train_dataset = dsets.MNIST(root='./data',
 train=True,
 transform=transforms.ToTensor(), # Normalize the image to [0-1] from [0-255]
 download=True)

test_dataset = dsets.MNIST(root='./data',
 train=False,
 transform=transforms.ToTensor())

num_epochs = num_iters / (len(train_dataset) / batch_size)
num_epochs = int(num_epochs)

train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
 batch_size=batch_size,
 shuffle=True) # It's better to shuffle the whole training datas

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
 batch_size=batch_size,
 shuffle=False)

class NeuralNetworkModel(nn.Module):
 def __init__(self, input_size, num_classes, num_hidden):
 super().__init__()
 ### 1st hidden layer
 self.linear_1 = nn.Linear(input_size, num_hidden)

 ### Non-linearity
 self.relu = nn.ReLU()

 ### Output layer
 self.linear_out = nn.Linear(num_hidden, num_classes)

Page 22 of 75

 def forward(self, x):
 # Linear layer
 out = self.linear_1(x)
 # Non-linearity
 out = self.relu(out)
 # Linear layer (output)
 probas = self.linear_out(out)
 return probas

model = NeuralNetworkModel(input_size = input_dim,
 num_classes = output_dim,
 num_hidden = num_hidden)
To enable GPU
model.to(device)

criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

iter = 0
for epoch in range(num_epochs):
 for i, (images, labels) in enumerate(train_loader):

 images = images.view(-1, 28*28).to(device)
 labels = labels.to(device)

 # Clear gradients w.r.t. parameters
 optimizer.zero_grad()

 # Forward pass to get output/logits
 outputs = model(images)

 # Calculate Loss: softmax --> cross entropy loss
 loss = criterion(outputs, labels)

 # Getting gradients w.r.t. parameters
 loss.backward()

 # Updating parameters
 optimizer.step()

 iter += 1

 if iter % 500 == 0:
 # Calculate Accuracy
 correct = 0
 total = 0
 # Iterate through test dataset
 for images, labels in test_loader:

 images = images.view(-1, 28*28).to(device)

 # Forward pass only to get logits/output
 outputs = model(images)

 # Get predictions from the maximum value
 _, predicted = torch.max(outputs, 1)

 # Total number of labels

Page 23 of 75

 total += labels.size(0)

 # Total correct predictions
 if torch.cuda.is_available():
 correct += (predicted.cpu() == labels.cpu()).sum()
 else:
 correct += (predicted == labels).sum()

 accuracy = 100 * correct.item() / total

 # Print Loss
 print('Iteration: {}. Loss: {}. Accuracy: {}'.format(iter, loss.item(), accuracy))

Iteration: 500. Loss: 0.18737341463565826. Accuracy: 91.48
Iteration: 1000. Loss: 0.3523785471916199. Accuracy: 93.14
Iteration: 1500. Loss: 0.22952955961227417. Accuracy: 93.83
Iteration: 2000. Loss: 0.09236818552017212. Accuracy: 94.86
Iteration: 2500. Loss: 0.262081503868103. Accuracy: 95.21
Iteration: 3000. Loss: 0.14769437909126282. Accuracy: 95.89

Two Layer FNN with ReLU Activation

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as dsets

Hyperparameters
batch_size = 100
num_iters = 3000
input_dim = 28*28 # num_features = 784
num_hidden = 100
output_dim = 10

learning_rate = 0.1

Device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

train_dataset = dsets.MNIST(root='./data',
 train=True,
 transform=transforms.ToTensor(), # Normalize the image to [0-1] from [0-255]
 download=True)

test_dataset = dsets.MNIST(root='./data',
 train=False,
 transform=transforms.ToTensor())

num_epochs = num_iters / (len(train_dataset) / batch_size)
num_epochs = int(num_epochs)

train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
 batch_size=batch_size,
 shuffle=True) # It's better to shuffle the whole training datas

Page 24 of 75

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
 batch_size=batch_size,
 shuffle=False)

class DeepNeuralNetworkModel(nn.Module):
 def __init__(self, input_size, num_classes, num_hidden):
 super().__init__()
 ### 1st hidden layer: 784 --> 100
 self.linear_1 = nn.Linear(input_size, num_hidden)
 ### Non-linearity in 1st hidden layer
 self.relu_1 = nn.ReLU()

 ### 2nd hidden layer: 100 --> 100
 self.linear_2 = nn.Linear(num_hidden, num_hidden)
 ### Non-linearity in 2nd hidden layer
 self.relu_2 = nn.ReLU()

 ### Output layer: 100 --> 10
 self.linear_out = nn.Linear(num_hidden, num_classes)

 def forward(self, x):
 ### 1st hidden layer
 out = self.linear_1(x)
 ### Non-linearity in 1st hidden layer
 out = self.relu_1(out)

 ### 2nd hidden layer
 out = self.linear_2(out)
 ### Non-linearity in 2nd hidden layer
 out = self.relu_2(out)

 # Linear layer (output)
 probas = self.linear_out(out)
 return probas

INSTANTIATE MODEL CLASS

model = DeepNeuralNetworkModel(input_size = input_dim,
 num_classes = output_dim,
 num_hidden = num_hidden)
To enable GPU
model.to(device)

INSTANTIATE LOSS & OPTIMIZER CLASS

criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

iter = 0
for epoch in range(num_epochs):
 for i, (images, labels) in enumerate(train_loader):

 images = images.view(-1, 28*28).to(device)
 labels = labels.to(device)

 # Clear gradients w.r.t. parameters
 optimizer.zero_grad()

Page 25 of 75

 # Forward pass to get output/logits
 outputs = model(images)

 # Calculate Loss: softmax --> cross entropy loss
 loss = criterion(outputs, labels)

 # Getting gradients w.r.t. parameters
 loss.backward()

 # Updating parameters
 optimizer.step()

 iter += 1

 if iter % 500 == 0:
 # Calculate Accuracy
 correct = 0
 total = 0
 # Iterate through test dataset
 for images, labels in test_loader:

 images = images.view(-1, 28*28).to(device)

 # Forward pass only to get logits/output
 outputs = model(images)

 # Get predictions from the maximum value
 _, predicted = torch.max(outputs, 1)

 # Total number of labels
 total += labels.size(0)

 # Total correct predictions
 if torch.cuda.is_available():
 correct += (predicted.cpu() == labels.cpu()).sum()
 else:
 correct += (predicted == labels).sum()

 accuracy = 100 * correct.item() / total

 # Print Loss
 print('Iteration: {}. Loss: {}. Accuracy: {}'.format(iter, loss.item(), accuracy))

Iteration: 500. Loss: 0.38067626953125. Accuracy: 91.27
Iteration: 1000. Loss: 0.1768297553062439. Accuracy: 93.35
Iteration: 1500. Loss: 0.10338889807462692. Accuracy: 95.04
Iteration: 2000. Loss: 0.1981402188539505. Accuracy: 95.89
Iteration: 2500. Loss: 0.05458816513419151. Accuracy: 96.15
Iteration: 3000. Loss: 0.14130154252052307. Accuracy: 96.5

Three Layer FNN with ReLU Activation

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as dsets

Page 26 of 75

Hyperparameters
batch_size = 100
num_iters = 3000
input_dim = 28*28 #num_features = 784
num_hidden = 100
output_dim = 10

learning_rate = 0.1

Device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

train_dataset = dsets.MNIST(root='./data',
 train=True,
 transform=transforms.ToTensor(), # Normalize the image to [0-1] from [0-255]
 download=True)

test_dataset = dsets.MNIST(root='./data',
 train=False,
 transform=transforms.ToTensor())

num_epochs = num_iters / (len(train_dataset) / batch_size)
num_epochs = int(num_epochs)

train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
 batch_size=batch_size,
 shuffle=True) # It's better to shuffle the whole training datas

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
 batch_size=batch_size,
 shuffle=False)

class DeepNeuralNetworkModel(nn.Module):
 def __init__(self, input_size, num_classes, num_hidden):
 super().__init__()
 ### 1st hidden layer: 784 --> 100
 self.linear_1 = nn.Linear(input_size, num_hidden)
 ### Non-linearity in 1st hidden layer
 self.relu_1 = nn.ReLU()

 ### 2nd hidden layer: 100 --> 100
 self.linear_2 = nn.Linear(num_hidden, num_hidden)
 ### Non-linearity in 2nd hidden layer
 self.relu_2 = nn.ReLU()

 ### 3rd hidden layer: 100 --> 100
 self.linear_3 = nn.Linear(num_hidden, num_hidden)
 ### Non-linearity in 3rd hidden layer
 self.relu_3 = nn.ReLU()

 ### Output layer: 100 --> 10
 self.linear_out = nn.Linear(num_hidden, num_classes)

 def forward(self, x):
 ### 1st hidden layer
 out = self.linear_1(x)

Page 27 of 75

 ### Non-linearity in 1st hidden layer
 out = self.relu_1(out)

 ### 2nd hidden layer
 out = self.linear_2(out)
 ### Non-linearity in 2nd hidden layer
 out = self.relu_2(out)

 ### 3rd hidden layer
 out = self.linear_3(out)
 ### Non-linearity in 3rd hidden layer
 out = self.relu_3(out)

 # Linear layer (output)
 probas = self.linear_out(out)
 return probas

INSTANTIATE MODEL CLASS

model = DeepNeuralNetworkModel(input_size = input_dim,
 num_classes = output_dim,
 num_hidden = num_hidden)
To enable GPU
model.to(device)

INSTANTIATE LOSS & OPTIMIZER CLASS
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

iter = 0
for epoch in range(num_epochs):
 for i, (images, labels) in enumerate(train_loader):

 images = images.view(-1, 28*28).to(device)
 labels = labels.to(device)

 # Clear gradients w.r.t. parameters
 optimizer.zero_grad()

 # Forward pass to get output/logits
 outputs = model(images)

 # Calculate Loss: softmax --> cross entropy loss
 loss = criterion(outputs, labels)

 # Getting gradients w.r.t. parameters
 loss.backward()

 # Updating parameters
 optimizer.step()

 iter += 1

 if iter % 500 == 0:
 # Calculate Accuracy
 correct = 0
 total = 0
 # Iterate through test dataset
 for images, labels in test_loader:

Page 28 of 75

 images = images.view(-1, 28*28).to(device)

 # Forward pass only to get logits/output
 outputs = model(images)

 # Get predictions from the maximum value
 _, predicted = torch.max(outputs, 1)

 # Total number of labels
 total += labels.size(0)

 # Total correct predictions
 if torch.cuda.is_available():
 correct += (predicted.cpu() == labels.cpu()).sum()
 else:
 correct += (predicted == labels).sum()

 accuracy = 100 * correct.item() / total

 # Print Loss
 print('Iteration: {}. Loss: {}. Accuracy: {}'.format(iter, loss.item(), accuracy))

Iteration: 500. Loss: 0.377877801656723. Accuracy: 90.61
Iteration: 1000. Loss: 0.2982105016708374. Accuracy: 94.45
Iteration: 1500. Loss: 0.2584376633167267. Accuracy: 94.73
Iteration: 2000. Loss: 0.08460734039545059. Accuracy: 95.71
Iteration: 2500. Loss: 0.10547266900539398. Accuracy: 95.72
Iteration: 3000. Loss: 0.04601271450519562. Accuracy: 96.85

Try with other activations from Pytorch.
Try different activations for different layers (We used ReLU Only)
Try adding more hidden layers
Try increasing the hidden layer neurons (We used 100 here in this example)
Try experimenting with different neurons for different hidden layers (We here in this examples used a �xed
sixe: 100)

What's Next?

Page 29 of 75

Page 30 of 75

 Session 03

 Goals:

 1. To know about Convolutional Neural Network

 Convolutional Neural Network

 Convolutional Neural Networks (CNNs) are widely used in computer vision tasks such as image
 classification, object detection, and image segmentation. Here are some ideas for CNN
 applications:

 a. Image Classification:
 Create a CNN for classifying common objects in everyday life. Develop a CNN for
 medical image classification, such as detecting diseases from X-rays or MRI scans.

 b. Object Detection:
 Build an object detection system for autonomous vehicles to identify pedestrians,
 vehicles, and road signs. Create a system that detects and tracks specific objects in a
 video stream, like tracking a soccer ball during a match.

 c. Image Segmentation:
 Develop a CNN for semantic segmentation in satellite images to classify different
 land-use categories. Build a real-time video segmentation model that can separate objects
 from their background.

 d. Face Recognition:
 Create a CNN-based face recognition system for security applications. Build a system
 that can estimate the age, gender, and emotions of individuals from their facial
 expressions.

 e. Style Transfer:
 Implement neural style transfer using CNNs to transform ordinary photos into artistic
 styles of famous painters. Create a mobile app that allows users to apply various artistic
 styles to their photos in real-time.

 f. Anomaly Detection:
 Develop a CNN to identify anomalies in manufacturing processes by analyzing sensor
 data. Create a system that can detect anomalous activities in video surveillance, such as
 break-ins or accidents.

 g. Medical Imaging:
 Build a CNN for detecting and localizing tumors in medical images like mammograms or
 CT scans. Create a system for diagnosing skin conditions based on dermatological
 images.

 h. Emotion Recognition:
 Develop a CNN-based system that can analyze facial expressions in real-time to
 recognize emotions. Create a sentiment analysis tool that uses CNNs to analyze emotions
 in text and multimedia content.

Page 31 of 75

 i. Video Analysis:
 Build a CNN-based action recognition system that can identify human actions in videos,
 such as dancing or playing sports. Develop a video summarization tool that uses CNNs to
 extract key frames and scenes from long video footage.

 j. Generative Models:
 Implement a CNN-based generative adversarial network (GAN) for generating realistic
 images, like faces or landscapes. Create a CNN-based text-to-image generator that can
 turn textual descriptions into visual representations.

 k. Autonomous Robots:
 Integrate CNNs into a robot's vision system to enable it to navigate and interact with its
 environment. Build a robot that can sort and categorize objects based on visual cues using
 a CNN.

 When working on these ideas, be sure to gather and preprocess the relevant datasets, fine-tune
 your network architecture, and carefully train and evaluate your models to achieve the best
 results. Also, consider the ethical implications and potential biases in your data and models,
 especially in applications like face recognition and sentiment analysis.

Page 32 of 75

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as dsets

'''
LOADING DATASET
'''
train = dsets.MNIST(root='./data',
 train=True,
 transform=transforms.ToTensor(), # Normalize the image to [0-1] from [0-255]
 download=True)

test = dsets.MNIST(root='./data',
 train=False,
 transform=transforms.ToTensor())

print(len(train))

60000

from torch import tensor
traindata = [train[i] for i in range(len(train))]
train = torch.stack([d[0] for d in traindata], dim=0)
train=train[0:59999]
ys = [d[1] for d in traindata]
train_y = tensor(ys)

testdata = [test[i] for i in range(len(test))]
test = torch.stack([d[0] for d in testdata], dim=0)
test=test[0:9999]
ys = [d[1] for d in testdata]
test_y = tensor(ys)

Seeding

torch.manual_seed(120)

<torch._C.Generator at 0x7f8f3c9c4650>

Dataset Loading

train = torch.rand(6000, 28, 28, 1)
test = torch.rand(1000, 28, 28, 1)
train_y = torch.randint(0,9, (6000,))
test_y = torch.randint(0,9, (1000,))

Page 33 of 75

print(train_y)

tensor([1, 4, 5, ..., 2, 8, 0])

Model Architeture

class NeuralNetwork(nn.Module):
 def __init__(self, input_dim):
 super(NeuralNetwork, self).__init__()
 self.cnn_layer_1 = nn.Conv2d(in_channels=1, out_channels=16,kernel_size=5, stride=1, padding=2)
 self.cnn_layer_2 = nn.Conv2d(in_channels=16, out_channels=32,kernel_size=5, stride=1, padding=2)

 self.flatten = nn.Flatten()
 self.maxpool = nn.MaxPool2d(2,2)

 self.linear_layer_1 = nn.Linear(32*7*7, 512)
 self.linear_layer_2 = nn.Linear(512, 128)
 self.linear_layer_3 = nn.Linear(128, 10)

 self.relu = nn.ReLU()
 self.sigmoid = nn.Sigmoid()
 self.dropout = nn.Dropout(.2)

 # self.flatten = nn.Flatten()

 def forward(self, x):

 x = self.cnn_layer_1(x)
 x = self.dropout(x)
 x = self.relu(x)
 x = self.maxpool(x)

 #print(x.shape)

 x = self.cnn_layer_2(x)
 x = self.dropout(x)
 x = self.relu(x)
 x = self.maxpool(x)

 #print(x.shape)

 x = self.flatten(x)
 #print(x.shape)

 x = self.linear_layer_1(x)
 x = self.dropout(x)
 x = self.relu(x)

 x = self.linear_layer_2(x)
 x = self.dropout(x)
 x = self.relu(x)

 x = self.linear_layer_3(x)
 #logits = self.sigmoid(x)
 return x

Page 34 of 75

Model Creation

model = NeuralNetwork(784)
print(model)

NeuralNetwork(
 (cnn_layer_1): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
 (cnn_layer_2): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
 (flatten): Flatten(start_dim=1, end_dim=-1)
 (maxpool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
 (linear_layer_1): Linear(in_features=1568, out_features=512, bias=True)
 (linear_layer_2): Linear(in_features=512, out_features=128, bias=True)
 (linear_layer_3): Linear(in_features=128, out_features=10, bias=True)
 (relu): ReLU()
 (sigmoid): Sigmoid()
 (dropout): Dropout(p=0.2, inplace=False)
)

from torchsummary import summary
summary(model,(1,28,28))

--
 Layer (type) Output Shape Param #
==
 Conv2d-1 [-1, 16, 28, 28] 416
 Dropout-2 [-1, 16, 28, 28] 0
 ReLU-3 [-1, 16, 28, 28] 0
 MaxPool2d-4 [-1, 16, 14, 14] 0
 Conv2d-5 [-1, 32, 14, 14] 12,832
 Dropout-6 [-1, 32, 14, 14] 0
 ReLU-7 [-1, 32, 14, 14] 0
 MaxPool2d-8 [-1, 32, 7, 7] 0
 Flatten-9 [-1, 1568] 0
 Linear-10 [-1, 512] 803,328
 Dropout-11 [-1, 512] 0
 ReLU-12 [-1, 512] 0
 Linear-13 [-1, 128] 65,664
 Dropout-14 [-1, 128] 0
 ReLU-15 [-1, 128] 0
 Linear-16 [-1, 10] 1,290
==
Total params: 883,530
Trainable params: 883,530
Non-trainable params: 0
--
Input size (MB): 0.00
Forward/backward pass size (MB): 0.49
Params size (MB): 3.37
Estimated Total Size (MB): 3.87
--

Optimizer

Page 35 of 75

loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=.001)

def trainModel(model, loss_fn, optimizer):
 model.train()

 batch = 100

 loss = 0
 for i in range(train.shape[0]):
 x, y = torch.reshape(train[i],(1,1,28,28)), torch.tensor([train_y[i]], dtype=torch.float)
 label=torch.zeros([1,10,], dtype=torch.float32)
 label[0,int(y.item())]=1
 # Compute prediction error
 pred = model(x)
 #print(pred)
 #print(label)
 loss += loss_fn(pred, label)

 if i>0 and (i+1)%batch == 0:
 # Backpropagation
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()
 print(f'Training Loss: {loss.item():.4f}', end="\r")
 loss = 0
 print()

Model testing

def testModel(model, loss_fn):
 model.eval()

 size = test.shape[0]
 correct=0
 loss = 0
 total =10000
 with torch.no_grad():
 for i in range(test.shape[0]):
 x, y = torch.reshape(test[i],(1,1,28,28)), torch.tensor([test_y[i]], dtype=torch.float)
 label=torch.zeros([1,10,], dtype=torch.float32)
 label[0,int(y.item())]=1
 pred = model(x)
 #print(pred)
 predicted = torch.argmax(pred)
 #print(predicted)
 #print(y)

 # Total correct predictions
 correct += (predicted == int(y)).sum()

 loss += loss_fn(pred, label)

 loss /= size

Page 36 of 75

 accuracy = 100 * correct.item() / total

 # Print Loss
 print('Loss: {}. Accuracy: {}'.format({loss}, accuracy))

epochs = 5
for t in range(epochs):
 print(f"Epoch {t+1}\n-------------------------------")
 trainModel(model, loss_fn, optimizer)
 testModel(model, loss_fn)
print("Done!")

Epoch 1

Training Loss: 0.8743
Loss: {tensor(0.0794)}. Accuracy: 97.75
Epoch 2

Training Loss: 0.6520
Loss: {tensor(0.0633)}. Accuracy: 98.16
Epoch 3

Training Loss: 0.6977
Loss: {tensor(0.0399)}. Accuracy: 98.8
Epoch 4

Training Loss: 0.1341
Loss: {tensor(0.0383)}. Accuracy: 98.8
Epoch 5

Training Loss: 1.1260
Loss: {tensor(0.0332)}. Accuracy: 99.01
Done!

Page 37 of 75

 Session 04

 Goals:

 1. To know about Recurrant Neural Network (RNN)

 2. To Know about Long Short Term Memory (LSTM)

 RNN vs LSTM

 Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks are both types of neural
 networks used for processing sequential data. However, there are significant differences between the two,
 primarily in their ability to handle long-range dependencies and mitigate the vanishing gradient problem. Here
 are some key differences:

 Architecture:

 RNN: RNNs have a simple architecture with a single hidden layer. They process input sequences one step at a
 time, and each step's output is used as input for the next step.
 LSTM: LSTMs, on the other hand, have a more complex architecture with multiple interacting layers (gates)
 within the recurrent unit. These gates control the flow of information and allow LSTMs to capture long-term
 dependencies.

 Handling Long-Term Dependencies:

 RNN: RNNs struggle to capture long-range dependencies in sequential data because of the vanishing gradient
 problem. This means that as sequences get longer, RNNs may have difficulty retaining and propagating
 information over many time steps.
 LSTM: LSTMs were specifically designed to address the vanishing gradient problem. They use specialized
 memory cells and gating mechanisms that allow them to capture and propagate information over long
 sequences, making them better suited for tasks that require modeling long-term dependencies.

 Gating Mechanisms:

 RNN: RNNs do not have explicit gating mechanisms. They simply apply a weighted sum of the current input
 and the previous hidden state at each time step.
 LSTM: LSTMs have three gating mechanisms: the input gate, the forget gate, and the output gate. These gates
 regulate the flow of information, allowing LSTMs to add or remove information from the cell state, which helps
 in managing long-term dependencies.

 Gradient Flow:

 RNN: RNNs often suffer from the vanishing gradient problem, which can make training deep networks
 challenging. As gradients backpropagate through many time steps, they tend to become very small or very
 large, affecting the learning process.
 LSTM: LSTMs are better at mitigating the vanishing gradient problem due to their gating mechanisms. The
 gates allow gradients to flow more easily through the network, enabling the training of deep LSTM
 architectures.

 Computational Complexity:

 RNN: RNNs are computationally less complex compared to LSTMs, which makes them faster to train and
 deploy.
 LSTM: LSTMs are more computationally intensive due to their additional gating mechanisms and multiple
 internal operations. This increased complexity can result in longer training times and higher resource
 requirements.

 In summary, while RNNs are simple and computationally efficient, they struggle with capturing long-term
 dependencies in sequential data. LSTMs, with their complex architecture and gating mechanisms, are
 designed to address these issues and are better suited for tasks that require modeling relationships over longer
 sequences. When working with sequential data, LSTMs are often the preferred choice when available
 resources and computational time allow for their use. Page 38 of 75

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as dsets

Hyperparameters
sequence_length = 28
input_size =28
hidden_size = 28
num_layers = 2
num_classes= 10
batch_size = 100
num_iters = 1200
learning_rate = 0.01 # More power so we can learn faster! previously it was 0.001

Device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

'''
LOADING DATASET
'''
train_dataset = dsets.MNIST(root='./data',
 train=True,
 transform=transforms.ToTensor(), # Normalize the image to [0-1] from [0-255]
 download=True)

test_dataset = dsets.MNIST(root='./data',
 train=False,
 transform=transforms.ToTensor())

'''
MAKING DATASET ITERABLE
'''
num_epochs = num_iters / (len(train_dataset) / batch_size)
num_epochs = int(num_epochs)

train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
 batch_size=batch_size,
 shuffle=True,drop_last=True) # It's better to shuffle the whole t

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
 batch_size=batch_size,
 shuffle=False,drop_last=True)

RNN: https://pytorch.org/docs/stable/generated/torch.nn.RNN.html

LSTM: https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html

class RNN(nn.Module):
 def __init__(self, input_size, hidden_size, num_layers, num_classes):
 super(RNN, self).__init__()
 self.hidden_size= hidden_size
 self.num_layers = num_layers

 #self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) # For uni Directional LSTM
 #self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True) # For uni Directional RNN

Page 39 of 75

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.nn.RNN.html
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fpytorch.org%2Fdocs%2Fstable%2Fgenerated%2Ftorch.nn.LSTM.html

 #self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True,bidirectional=True) # For BiD
 self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True,bidirectional=True) # For Bi
 #self.fc = nn.Linear(hidden_size, num_classes) #For uni Directional
 self.fc = nn.Linear(hidden_size*2, num_classes) #For Bidirectional

 def forward(self, x):
 # set initial hidden and cell states
 #h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device) #For uni Directional
 #c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device) #For uni Directional
 h0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device) #For Bidirectional
 c0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device) #For Bidirectional

 #Forward Propagation
 #out, _ = self.rnn(x,h0)
 out, _ = self.lstm(x,(h0,c0)) #out: tensor of shape (batch size, seq_length, hidden_size)
 # Decode the hidden state of the last time step
 out = self.fc(out[:, -1, :])
 return out

input_size – The number of expected features in the input x

hidden_size – The number of features in the hidden state h

num_layers – Number of recurrent layers. E.g., setting num_layers=2 would mean stacking two LSTMs together to
form a stacked LSTM, with the second LSTM taking in outputs of the �rst LSTM and computing the �nal results.
Default: 1

bias – If False, then the layer does not use bias weights b_ih and b_hh. Default: True

batch_�rst – If True, then the input and output tensors are provided as (batch, seq, feature) instead of (seq, batch,
feature). Note that this does not apply to hidden or cell states. See the Inputs/Outputs sections below for details.
Default: False

dropout – If non-zero, introduces a Dropout layer on the outputs of each LSTM layer except the last layer, with dropout
probability equal to dropout. Default: 0

bidirectional – If True, becomes a bidirectional LSTM. Default: False

proj_size – If > 0, will use LSTM with projections of corresponding size. Default: 0

'''
INSTANTIATE MODEL CLASS
'''
model = RNN(input_size, hidden_size, num_layers, num_classes)
To enable GPU
model.to(device)

RNN(
 (lstm): LSTM(28, 28, num_layers=2, batch_first=True, bidirectional=True)
 (fc): Linear(in_features=56, out_features=10, bias=True)
)

criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

'''
TRAIN THE MODEL

Page 40 of 75

'''
iter = 0
for epoch in range(num_epochs):
 for i, (images, labels) in enumerate(train_loader):

 images = images.reshape(-1, sequence_length, input_size).to(device)
 labels = labels.to(device)

 # Clear gradients w.r.t. parameters
 optimizer.zero_grad()

 # Forward pass to get output/logits
 outputs = model(images)

 # Calculate Loss: softmax --> cross entropy loss
 loss = criterion(outputs, labels)

 # Getting gradients w.r.t. parameters
 loss.backward()

 # Updating parameters
 optimizer.step()

 iter += 1

 if iter % 300 == 0:
 # Calculate Accuracy
 correct = 0
 total = 0
 # Iterate through test dataset
 for images, labels in test_loader:

 images = images.reshape(-1, sequence_length, input_size).to(device)

 # Forward pass only to get logits/output
 outputs = model(images)

 # Get predictions from the maximum value
 _, predicted = torch.max(outputs, 1)

 # Total number of labels
 total += labels.size(0)

 # Total correct predictions
 if torch.cuda.is_available():
 correct += (predicted.cpu() == labels.cpu()).sum()
 else:
 correct += (predicted == labels).sum()

 accuracy = 100 * correct.item() / total

 # Print Loss
 print('Iteration: {}. Loss: {}. Accuracy: {}'.format(iter, loss.item(), accuracy))

Iteration: 300. Loss: 0.23381160199642181. Accuracy: 94.48
Iteration: 600. Loss: 0.1339578628540039. Accuracy: 95.12
Iteration: 900. Loss: 0.1674966961145401. Accuracy: 97.25
Iteration: 1200. Loss: 0.08532698452472687. Accuracy: 97.11

Page 41 of 75

 Session 05

 Goals:

 1. To know about Natural Language Processing

 2. To Know about Basic Terminologies of NLP

Page 42 of 75

All texts need to be converted to numbers before starts processing by the machine. Speci�cally, vectors of
numbers.

Text is messy in nature and machine learning algorithms prefer well de�ned �xed-length inputs and outputs.

Word Embedding is one such technique where we can represent the text using vectors. Before deep learning era,
the popular forms of word embeddings were:

BoW, which stands for Bag of Words
TF-IDF, which stands for Term Frequency-Inverse Document Frequency

Bag-of-Words (BoW)

The Bag-of-Words (BoW) model is a way of representing text data when modeling text with machine learning
algorithms. The Bag-of-Words (BoW) model is popular, simple to understand, and has seen great success in
language modeling and document classi�cation.

A bag-of-words is a representation of text that describes the occurrence of words within a document. It involves
two things:

A vocabulary of known words.
A measure of the presence of known words.

Example (BoW)

Consider the following 4 sentences:-

It was the best of times.
it was the worst of Times.
it is the time of stupidity.
it is the age of foolishness.

Form this above example, let’s consider each line as a separate “document” and the 4 lines as our entire corpus of
documents.

Vocabulary

What would be the total vocabulary???

Word Embedding

1. Design the Vocabulary

The unique words by ignoring case, punctuations, and making them into root words are:

1. it
2. was
3. the
4. best

Bag of Words (BoW) Model

Page 43 of 75

5. of
�. time
7. worst
�. stupidity
9. is

10. age
11. foolishness

Vocabulary contains 11 words while the full corpus contains 24 words.

2. Create Document Vectors

The objective is to turn each document of text into a vector so that we can use as input or output for a machine
learning model.

Because we know the vocabulary has 11 words, we can use a �xed-length document representation of 11, with one
position in the vector to score each word. The simplest scoring method is to mark the presence of words as a
boolean value, 0 for absent, non-zero (positive value) for present. There can be other methods such as count based
methods of the terms if more than one occurance of a trem.

In this example the binary vector of four documents would look as follows:

it was the best of time worst stupidity is age foolishness

Document #1 [It was the best of times.] 1 1 1 1 1 1 0 0 0 0 0

Document #2 [it was the worst of Times.] 1 1 1 0 1 1 1 0 0 0 0

Document #3 [it is the time of stupidity.] 1 0 1 0 1 1 0 1 1 0 0

Document #4 [it is the age of foolishness.] 1 0 1 0 1 0 0 0 1 1 1

Problems

Ordering of words have been discarded which ignores the context. These unordered words can't preserve
document semantics For instance, “this is interesting” vs “is this interesting”. Moreover, "stupidity" and
"foolishness" are considered two different words in the dictionary.
We are retaining no information on the grammar of the sentences.
New documents that overlap with the vocabulary of known words, but may contain words outside of the
vocabulary.
If the vocabulary size increases the document representation dimension also increases.

In the previous example, the length of the document vector is equal to the number of known words which is 11
words.

For a very large corpus, such as thousands of books, the length of the vector might be thousands or millions of
positions. Further, each document may contain very few of the known words in the vocabulary. This results in a
vector with lots of zero scores, called a sparse vector or sparse representation. Sparse vectors require more
memory and computational resources (space and time complexity)

It's very important to decrease the size of the vocabulary when using a bag-of-words model.

Managing Vocabulary

Page 44 of 75

Solution #1

There are simple text cleaning techniques that can be used as a �rst step, such as:

Ignoring case
Ignoring punctuation
Ignoring frequent words that don’t contain much information, called stop words, like “a,” “of,” etc.
Fixing misspelled words.
Reducing words to their stem (e.g. “play” from “playing”) using stemming algorithms.

Solution #2

Each word or token is called a “gram”. Creating a vocabulary of two-word pairs is, in turn, called a bigram model.

An N-gram is an N-token sequence of words: a 2-gram (more commonly called a bigram) is a two-word sequence of
words like “please turn”, “turn your”, or “your homework”, and a 3-gram (more commonly called a trigram) is a three-
word sequence of words like “please turn your”, or “turn your homework”.

For example, the bigrams in the �rst line of text in the previous section: “It was the best of times” are as follows:

“it was”
“was the”
“the best”
“best of”
“of times”

A vocabulary then tracks triplets of words is called a trigram model and the general approach is called the n-gram
model, where n refers to the number of grouped words.

Note: Often a simple bigram approach is better than a 1-gram bag-of-words model.

The one hot representation, as the name suggests, starts with a zero vector, and sets as 1 the corresponding entry
in the vector if the word is present in the sentence or document.

Tokenizing the sentences, ignoring punctuation, and treating everything as lowercase, will yield a vocabulary of size
8: {time, fruit, flies, like, a, an, arrow, banana} .

The binary encoding for “like a banana” would then be:

[0, 0, 0, 1, 1, 0, 0, 1]

One-Hot Representation

from sklearn.feature_extraction.text import CountVectorizer
import seaborn as sns

corpus = ['Time flies flies like an arrow.',
 'Fruit flies like a banana.']

one_hot_vectorizer = CountVectorizer(binary=True)
one_hot = one_hot_vectorizer.fit_transform(corpus).toarray()

Page 45 of 75

[[1 1 0 1 0 1 1]
 [0 0 1 1 1 1 0]]
{'time': 6, 'flies': 3, 'like': 5, 'an': 0, 'arrow': 1, 'fruit': 4, 'banana': 2}
['an', 'arrow', 'banana', 'flies', 'fruit', 'like', 'time']
<matplotlib.axes._subplots.AxesSubplot at 0x7fdb7ea99fa0>

print (one_hot)

print (one_hot_vectorizer.vocabulary_)

dictionary = sorted(one_hot_vectorizer.vocabulary_)

print(dictionary)

sns.heatmap(one_hot, annot=True, cbar=False, xticklabels=dictionary,
 yticklabels=['Sentence 1','Sentence 2'])

Term Frequent (TF) is a measure of how frequently a term, , appears in a document, :

 = Number of times term appears in a document . Thus, each document and term would have its own TF
value.

Consider these 3 documents like BoW model:-

It was the best of the time.
it was the worst of Times.
it is the time of stupidity.

The vocabulary or dictionary of the entire corpus would be:-

1. it
2. was
3. the
4. best

Term Frequency (TF)

t d

T =Ft,d

nt,d

Total number of terms in document d

nt,d t d

Page 46 of 75

5. of
�. time
7. worst
�. is
9. stupidity

Now we will calculate the TF values for the Document 3.

Document 3 :- it is the time of stupidity.

Number of words in Document 3 = 6
TF for the word ‘the’ = (number of times ‘the’ appears in Document 3) / (number of terms in Document 3) =
1/6

Likewise:-

TF('it') = 1/6
TF('was') = 0/6 = 0
TF('the') = 1/6
TF('best') = 0/6 = 0
TF('of') = 1/6
TF('time') = 1/6
TF('worst') = 0/6 = 0
TF('is') = 1/6
TF('stupidity') = 1/6

We can calculate all the term frequencies for all the terms of all the documents in this manner:-

Term Document#1 Document#2 Document#3 TF (Document#1) TF (Document#2) TF (Document#3)

it 1 1 1 1/7 1/6 1/6

was 1 1 0 1/7 1/6 0

the 2 1 1 2/7 1/6 1/6

best 1 0 0 1/7 0 0

of 1 1 1 1/7 1/6 1/6

time 1 1 1 1/7 1/6 1/6

worst 0 1 0 0 1/6 0

is 0 0 1 0 0 1/6

stupidity 0 0 1 0 0 1/6

import math

print(math.log((3),10))

print(math.log((330),10))

print(math.log((3/3),10))

print(math.log((4/3),10))

print(math.log((4/5),10))

Page 47 of 75

0.47712125471966244
2.518513939877887
0.0
0.1249387366082999
-0.09691001300805638

IDF is a measure of how important a term is. We need the IDF value because computing just the TF alone is not
su�cient to understand the importance of words:

A problem with scoring word frequency is that highly frequent words (‘is’, ‘the’, ‘a’ etc) start to dominate in the
document (e.g. larger score), but may not contain as much “useful information” to the model comapre to the rarer
but domain speci�c words.

One approach is to rescale the frequency of words by how often they appear in all documents, so that the scores
for frequent words like “the” that are also frequent across all documents are penalized.

This approach to scoring is called Term Frequency – Inverse Document Frequency, or TF-IDF for short, where:

Term Frequency: is a scoring of the frequency of the word in the current document.
Inverse Document Frequency: is a scoring of how rare the word is across documents.

Thus the idf of a rare term is high, whereas the idf of a frequent term is likely to be low.

We can calculate the IDF values for Document 3:

Document 3 :- it is the time of stupidity.

IDF(‘it’) = log(total number of documents/number of documents containing the word ‘it’) = log(3/3) = log(1) = 0

We can calculate the IDF values for each word like this. Thus, the IDF values for the entire vocabulary would be:

Term Document#1 Document#2 Document#3 IDF

it 1 1 1 0.00

was 1 1 0 0.18

the 2 1 1 0.00

best 1 0 0 0.48

of 1 1 1 0.00

time 1 1 1 0.00

worst 0 1 0 0.48

is 0 0 1 0.48

stupidity 0 0 1 0.48

We can now compute the TF-IDF score for each word in the corpus. Words with a higher score are more important,
and those with a lower score are less important:

Inverse Document Frequency (IDF)

ID = log ()Ft

Total Number of Documents

The Number of Documents with Term t

Page 48 of 75

You can �nd the overall summary in the following �gure.

We can now calculate the TF-IDF score for every word in Document 3:

Document 3 :- it is the time of stupidity.

TF-IDF(‘it’, Document 3) = TF(‘it’, Document 3) * IDF(‘it’) = 1/6 * 0 = 0

Likewise:-

TF('it') = (1/6) * 0 = 0
TF('is') = (1/6) * 0.48
TF('the') = (1/6) * 0 = 0
TF('best') = (0/6) * 0.48 = 0
TF('time') = (1/6) * 0 = 0
TF('of') = (1/6) * 0 = 0
TF('stupidity') = (1/6) * 0.48

Similarly, we can calculate the TF-IDF scores for all the words with respect to all the documents.

First, notice how if there is a very common word that occurs in all documents (i.e., n = N), IDF(w) is 0 and the
TF IDF score is 0, thereby completely penalizing that term.
Second, if a term occurs very rarely, perhaps in only one document, the IDF will be the maximum possible
value, log N

(TF − IDF = T ∗ ID)t,d Ft,d Ft

from sklearn.feature_extraction.text import TfidfVectorizer
import seaborn as sns
import matplotlib as plt

corpus = ['Neural networks are a fundamental component of artificial intelligence, playing a pivotal role in
 'Their ability to mimic the human brain interconnected structure and learning capabilities enables
 'Neural networks have revolutionized various industries, such as healthcare, finance, and autonomo
 'They have significantly enhanced natural language processing, making virtual assistants and langu
 'Furthermore, neural networks have propelled computer vision to new heights, enabling machines to

tfidf_vectorizer = TfidfVectorizer()
tfidf = tfidf_vectorizer.fit_transform(corpus).toarray()

print (tfidf)

print (tfidf_vectorizer.vocabulary_)

Page 49 of 75

dictionary = sorted(tfidf_vectorizer.vocabulary_)

print(dictionary)

sns.heatmap(tfidf, annot=True, cbar=False,linewidths=.5, xticklabels=dictionary,
 yticklabels=['Sentence 1','Sentence 2','Sentence 3'])

Page 50 of 75

[[0. 0. 0.26824958 0. 0. 0.26824958
 0.26824958 0. 0. 0. 0. 0.
 0. 0. 0.26824958 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0.26824958 0. 0. 0. 0. 0.
 0.26824958 0. 0.26824958 0. 0. 0.
 0. 0. 0. 0. 0.26824958 0.
 0. 0.17964987 0.17964987 0. 0. 0.26824958
 0. 0.26824958 0.26824958 0. 0. 0.
 0. 0. 0.26824958 0. 0. 0.
 0. 0.26824958 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0.]
 [0.21862917 0.21862917 0. 0. 0.12317186 0.
 0. 0. 0. 0. 0.21862917 0.
 0.21862917 0.21862917 0. 0. 0. 0.
 0.21862917 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.21862917
 0. 0. 0. 0.21862917 0. 0.21862917
 0. 0. 0. 0.21862917 0. 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0.21862917 0. 0.
 0. 0. 0. 0. 0.21862917 0.21862917
 0. 0. 0.21862917 0.21862917 0.21862917 0.
 0.35277728 0. 0.21862917 0. 0. 0.
 0. 0. 0.21862917]
 [0. 0. 0. 0.23177513 0.26115613 0.
 0. 0.23177513 0. 0.23177513 0. 0.23177513
 0. 0. 0. 0. 0.23177513 0.
 0. 0. 0. 0.23177513 0. 0.23177513
 0. 0. 0.15522251 0.23177513 0. 0.
 0. 0.23177513 0. 0. 0. 0.
 0. 0. 0.23177513 0. 0. 0.
 0. 0.15522251 0.15522251 0. 0. 0.
 0.23177513 0. 0. 0. 0. 0.
 0. 0.23177513 0. 0. 0. 0.
 0.23177513 0. 0. 0. 0. 0.
 0. 0. 0. 0.23177513 0.23177513 0.23177513
 0. 0. 0.]
 [0. 0. 0. 0. 0.1418874 0.
 0. 0. 0.25184911 0. 0. 0.
 0. 0. 0. 0. 0. 0.25184911
 0. 0. 0.25184911 0. 0. 0.
 0. 0. 0.16866629 0. 0. 0.
 0. 0. 0. 0. 0.50369823 0.
 0. 0.25184911 0. 0. 0. 0.25184911
 0.25184911 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0.25184911 0.
 0. 0. 0. 0.25184911 0. 0.
 0. 0. 0. 0. 0. 0.25184911
 0. 0.25184911 0. 0. 0. 0.
 0.25184911 0. 0.]
 [0. 0. 0. 0. 0.14418901 0.
 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0.25593446 0. 0.
 0. 0.25593446 0. 0. 0.25593446 0.
 0. 0.25593446 0.17140229 0. 0.25593446 0.
 0. 0. 0. 0. 0. 0.
 0.25593446 0. 0. 0. 0. 0.
 0. 0.17140229 0.17140229 0.25593446 0.25593446 0.
 0. 0. 0. 0. 0. 0.25593446
 0.25593446 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.
 0.41297262 0. 0. 0. 0. 0.

0 0 25593446 0]]

Bag of Words just creates a set of vectors containing the count of word occurrences in the document, while the TF-
IDF model contains information on the more important words and the less important ones as well.

Bag of Words vectors are easy to interpret. However, TF-IDF usually performs better in machine learning models.

Understanding the context of words is important. Detecting the similarity between the words ‘time’ and ‘age’, or
'stupidity' and 'foolishness'.

This is where Word Embedding techniques such as Word2Vec, Continuous Bag of Words (CBOW), Skipgram, etc
come into play.

Summary

Bag-of-Words Text Classi�cation

Page 51 of 75

 0. 0.25593446 0.]]
{'neural': 44, 'networks': 43, 'are': 5, 'fundamental': 24, 'component': 14, 'of': 47, 'artificial': 6
['ability', 'accuracy', 'advancements', 'analyzing', 'and', 'are', 'artificial', 'as', 'assistants', '
<Axes: >

We will show how to build a simple Bag of Words (BoW) text classi�er using PyTorch. The classi�er is trained on
IMDB movie reviews dataset.

from pathlib import Path

import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from google_drive_downloader import GoogleDriveDownloader as gdd
from torch.utils.data import DataLoader, Dataset
from sklearn.feature_extraction.text import CountVectorizer

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device

device(type='cpu')

DATA_PATH = '/content/imdb.csv'
if not Path(DATA_PATH).is_file():
gdd.download_file_from_google_drive(
file_id='1EWReHFoPXK2Z-zdELR_LC6J6VRgp-QgN',
dest_path=DATA_PATH,
)

Upload imdb.csv file in colab
DATA_PATH = '/content/imdb.csv'
import pandas as pd
df=pd.read_csv(DATA_PATH)
print(df.head())

 review sentiment
0 One of the other reviewers has mentioned that ... positive
1 A wonderful little production.

The... positive
2 I thought this was a wonderful way to spend ti... positive
3 Basically there's a family where a little boy ... negative
4 Petter Mattei's "Love in the Time of Money" is... positive

import numpy as np
x=np.array(pd)
print(x)

<module 'pandas' from '/usr/local/lib/python3.8/dist-packages/pandas/__init__.py'>

Bag-of-Words Sentiment Classi�cation

Page 52 of 75

So the �nal bag-of-words vector for ['the', 'gray', 'cat', 'sat', 'on', 'the', 'gray', 'mat'] is [0, 1, 1,
2, 2, 1, 0, 1]

class Sequences(Dataset):
 def __init__(self, data):
 self.vectorizer = CountVectorizer(stop_words='english')
 self.sequences = self.vectorizer.fit_transform(data.review.tolist())
 self.labels = data.sentiment.tolist()
 self.token2idx = self.vectorizer.vocabulary_
 self.idx2token = {idx: token for token, idx in self.token2idx.items()}

 def __getitem__(self, i):
 return self.sequences[i, :].toarray(), self.labels[i]

 def __len__(self):
 return self.sequences.shape[0]

df = pd.read_csv(DATA_PATH)

print((df))
codes=[0,1]
df.columns = ["review", "sentiment"]
df["sentiment"] = df["sentiment"].astype('category')
df["sentiment"] = df["sentiment"].cat.codes

df_train = df.head(900)
df_test = df.tail(100)
print(df_train)
dataset = Sequences(df_train)

train_loader = DataLoader(dataset, batch_size=900)

 review sentiment
0 One of the other reviewers has mentioned that ... positive
1 A wonderful little production.

The... positive
2 I thought this was a wonderful way to spend ti... positive
3 Basically there's a family where a little boy ... negative
4 Petter Mattei's "Love in the Time of Money" is... positive

Page 53 of 75

...
1494 Zoey 101 is basically about a girl named Zoey ... negative
1495 This movie is terrible, it was so difficult to... negative
1496 The only thing serious about this movie is the... positive
1497 2005 was one of the best year for movies. We h... positive
1498 According to John Ford's lyrically shot, ficti... positive

[1499 rows x 2 columns]
 review sentiment
0 One of the other reviewers has mentioned that ... 1
1 A wonderful little production.

The... 1
2 I thought this was a wonderful way to spend ti... 1
3 Basically there's a family where a little boy ... 0
4 Petter Mattei's "Love in the Time of Money" is... 1
..
895 But it is kinda hilarious, at least if you gre... 1
896 One of the two Best Films of the year. A well ... 1
897 I managed to see this at the New York Internat... 1
898 Why else would he do this to me?

No... 0
899 Minimal script, minimal character development,... 0

[900 rows x 2 columns]

class BagOfWordsClassifier(nn.Module):
 def __init__(self, vocab_size, hidden1, hidden2):
 super().__init__()
 ### 1st hidden layer: vocab_size --> 128
 self.linear_1 = nn.Linear(vocab_size, hidden1)
 ### Non-linearity in 1st hidden layer
 self.relu_1 = nn.ReLU()

 ### 2nd hidden layer: 128 --> 64
 self.linear_2 = nn.Linear(hidden1, hidden2)
 ### Non-linearity in 2nd hidden layer
 self.relu_2 = nn.ReLU()

 ### Output layer: 64 --> 1
 self.linear_out = nn.Linear(hidden2, 1)

 def forward(self, inputs):
 ### 1st hidden layer
 out = self.linear_1(inputs.squeeze(1).float())
 ### Non-linearity in 1st hidden layer
 out = self.relu_1(out)

 ### 2nd hidden layer
 out = self.linear_2(out)
 ### Non-linearity in 2nd hidden layer
 out = self.relu_2(out)

 # Linear layer (output)
 logits = self.linear_out(out)

 return logits

model = BagOfWordsClassifier(len(dataset.token2idx), 128, 64)
model

BagOfWordsClassifier(
 (linear_1): Linear(in_features=16683, out_features=128, bias=True)

Page 54 of 75

 (relu_1): ReLU()
 (linear_2): Linear(in_features=128, out_features=64, bias=True)
 (relu_2): ReLU()
 (linear_out): Linear(in_features=64, out_features=1, bias=True)
)

criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

train_losses = []

for epoch in range(150):
 losses = []
 total = 0
 for inputs, target in train_loader:
 model.zero_grad()
 #print(target)
 output = model(inputs)
 loss = criterion(output.squeeze(), target.float())

 loss.backward()

 optimizer.step()

 losses.append(loss.item())
 total += 1

 epoch_loss = sum(losses) / total
 train_losses.append(epoch_loss)

 print(f'Epoch #{epoch + 1}\tTrain Loss: {epoch_loss:.3f}')

Epoch #1 Train Loss: 0.693
Epoch #2 Train Loss: 0.676
Epoch #3 Train Loss: 0.654
Epoch #4 Train Loss: 0.626
Epoch #5 Train Loss: 0.592
Epoch #6 Train Loss: 0.555
Epoch #7 Train Loss: 0.514
Epoch #8 Train Loss: 0.472
Epoch #9 Train Loss: 0.428
Epoch #10 Train Loss: 0.384
Epoch #11 Train Loss: 0.341
Epoch #12 Train Loss: 0.300
Epoch #13 Train Loss: 0.261
Epoch #14 Train Loss: 0.225
Epoch #15 Train Loss: 0.192
Epoch #16 Train Loss: 0.162
Epoch #17 Train Loss: 0.136
Epoch #18 Train Loss: 0.113
Epoch #19 Train Loss: 0.094
Epoch #20 Train Loss: 0.077
Epoch #21 Train Loss: 0.063
Epoch #22 Train Loss: 0.052
Epoch #23 Train Loss: 0.043
Epoch #24 Train Loss: 0.035
Epoch #25 Train Loss: 0.029
Epoch #26 Train Loss: 0.024
Epoch #27 Train Loss: 0.020

Page 55 of 75

Epoch #28 Train Loss: 0.016
Epoch #29 Train Loss: 0.014
Epoch #30 Train Loss: 0.012
Epoch #31 Train Loss: 0.010
Epoch #32 Train Loss: 0.008
Epoch #33 Train Loss: 0.007
Epoch #34 Train Loss: 0.006
Epoch #35 Train Loss: 0.005
Epoch #36 Train Loss: 0.005
Epoch #37 Train Loss: 0.004
Epoch #38 Train Loss: 0.004
Epoch #39 Train Loss: 0.003
Epoch #40 Train Loss: 0.003
Epoch #41 Train Loss: 0.003
Epoch #42 Train Loss: 0.002
Epoch #43 Train Loss: 0.002
Epoch #44 Train Loss: 0.002
Epoch #45 Train Loss: 0.002
Epoch #46 Train Loss: 0.002
Epoch #47 Train Loss: 0.002
Epoch #48 Train Loss: 0.001
Epoch #49 Train Loss: 0.001
Epoch #50 Train Loss: 0.001
Epoch #51 Train Loss: 0.001
Epoch #52 Train Loss: 0.001
Epoch #53 Train Loss: 0.001
Epoch #54 Train Loss: 0.001
Epoch #55 Train Loss: 0.001
Epoch #56 Train Loss: 0.001
Epoch #57 Train Loss: 0.001
E h #58 T i L 0 001

def predict_sentiment(text):
 test_vector = torch.LongTensor(dataset.vectorizer.transform([text]).toarray())

 output = model(test_vector)

 prediction = torch.sigmoid(output).item()

 if prediction > 0.5:
 print(f'{prediction:0.3}: Positive sentiment')
 return 1
 else:
 print(f'{prediction:0.3}: Negative sentiment')
 return 0

test_text = "The story itself is just predictable and lazy."
predict_sentiment(test_text)

0.332: Negative sentiment
0

test_text = "Excellent cast, story line, performances."
predict_sentiment(test_text)

0.78: Positive sentiment
1

from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score

Page 56 of 75

from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from sklearn.metrics import cohen_kappa_score
from sklearn.metrics import roc_auc_score
from sklearn.metrics import confusion_matrix

from sklearn.metrics import classification_report

pred_labels = []

sentences = list(df_test['review'])
labels = df_test['sentiment']

print(sentences)

for sentence in sentences:
 pred_labels.append(predict_sentiment(sentence))

accuracy: (tp + tn) / (p + n)
accuracy = accuracy_score(labels, pred_labels)
print('Accuracy: %f' % accuracy)

precision tp / (tp + fp)
precision = precision_score(labels, pred_labels)
print('Precision: %f' % precision)

recall: tp / (tp + fn)
recall = recall_score(labels, pred_labels)
print('Recall: %f' % recall)

f1: 2 tp / (2 tp + fp + fn)
f1 = f1_score(labels, pred_labels)
print('F1 score: %f' % f1)

confusion matrix
matrix = confusion_matrix(labels, pred_labels)
print(matrix)
print(classification_report(labels, pred_labels,digits=4))

Page 57 of 75

0.0724: Negative sentiment
3.02e-09: Negative sentiment
0.994: Positive sentiment
0.864: Positive sentiment
0.998: Positive sentiment
0.505: Positive sentiment
0.998: Positive sentiment
0.274: Negative sentiment
0.935: Positive sentiment
0.972: Positive sentiment
0.999: Positive sentiment
0.000407: Negative sentiment
0.982: Positive sentiment
1.76e-09: Negative sentiment
0.992: Positive sentiment
0.999: Positive sentiment
0.00205: Negative sentiment
7.81e-06: Negative sentiment
0.000193: Negative sentiment
0.461: Negative sentiment
0.984: Positive sentiment
0.999: Positive sentiment
Accuracy: 0.800000
Precision: 0.862745
Recall: 0.771930
F1 score: 0.814815
[[36 7]
 [13 44]]
 precision recall f1-score support

 0 0.7347 0.8372 0.7826 43
 1 0.8627 0.7719 0.8148 57

 accuracy 0.8000 100
 macro avg 0.7987 0.8046 0.7987 100
weighted avg 0.8077 0.8000 0.8010 100

Page 58 of 75

 Session 06

 Goals:

 1. To know about the Sentence Representation Techniques of NLP

 2. To know about Techniques for Sentence Preprocessing

Page 59 of 75

Natural Language Processing (NLP) - A hands-on
introduction

NLTK
spaCy

NLTK & spaCy is a free open-source library for Natural Language
Processing (NLP) in Python to support teaching, research, and
development. Which are:-

Free and Open source
Easy to use
Modular
Well documented
Simple and extensible

In this notebook, I will provide basic NLP tasks that we need in order to
process raw text to �nd useful informations. For each tasks, we will be
using NLTK as well as spaCy. Good news is that both are installed in Google
Colab by default.

Popular Libraries

Corpus - Corpora is the plural of Corpus. "Corpus" mainly appears in
NLP area or application domain related to texts/documents, because
of its meaning "a collection of written texts"

Example: A collection of news documents.

Some de�nitions

Page 60 of 75

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fwww.nltk.org%2F
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fspacy.io%2F

Dataset - dataset appears in every application domain (in can be
image/video/text/numerical/mixed) --- a collection of any kind of data
is a dataset.

Lexicon - vocabulary or list of Words and their meanings.

Example: English dictionary.

Token - Each "entity" that is a part of whatever was split up based on
rules.

For examples, each word is a token when a sentence is
"tokenized" into words. Each sentence can also be a token, if
you tokenized the sentences out of a paragraph.

Tokenization is the process of breaking a stream of text up into sentences,
words, phrases, symbols, or other meaningful elements called tokens.

Tokenization

import nltk
nltk.download('punkt')

For tokenizing words and sentences
from nltk.tokenize import word_tokenize, sent_tokenize

s = "Good muffins cost $3.88\nin New York. Please buy me two of them.\n

print (sent_tokenize(s))
print (word_tokenize(s))

[nltk_data] Downloading package punkt to /root/nltk_data...
[nltk_data] Unzipping tokenizers/punkt.zip.
['Good muffins cost $3.88\nin New York.', 'Please buy me two of t
['Good', 'muffins', 'cost', '$', '3.88', 'in', 'New', 'York', '.'

Page 61 of 75

import spacy

Small spaCy model
nlp = spacy.load("en_core_web_sm")

doc = nlp("Good muffins cost $3.88\nin New York. Please buy me two of t

print("\n\nTokenized Sentences")

for i, sent in enumerate(doc.sents):
 print('-->Sentence %d: %s' % (i, sent.text))

print("\n\nTokenized Words")

tokens = [token.text for token in doc]
print(tokens)

/usr/local/lib/python3.8/dist-packages/torch/cuda/__init__.py:497
 warnings.warn("Can't initialize NVML")

Tokenized Sentences
-->Sentence 0: Good muffins cost $3.88
in New York.
-->Sentence 1: Please buy me two of them.

-->Sentence 2: Thanks.

Tokenized Words
['Good', 'muffins', 'cost', '$', '3.88', '\n', 'in', 'New', 'York

Downloading Large spaCy model

Page 62 of 75

!python -m spacy download en_core_web_lg

import en_core_web_lg

nlp = en_core_web_lg.load()

/usr/local/lib/python3.8/dist-packages/torch/cuda/__init__.py:497
 warnings.warn("Can't initialize NVML")
2023-01-30 07:43:41.145527: E tensorflow/stream_executor/cuda/cud
Looking in indexes: https://pypi.org/simple, https://us-python.pkg
Collecting en-core-web-lg==3.4.1
 Downloading https://github.com/explosion/spacy-models/releases/
 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 587.7/587.7 MB 2.3 M
Requirement already satisfied: spacy<3.5.0,>=3.4.0 in /usr/local/
Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /usr/loca
Requirement already satisfied: pathy>=0.3.5 in /usr/local/lib/pyt
Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /usr/
Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /usr/local/
Requirement already satisfied: spacy-loggers<2.0.0,>=1.0.0 in /us
Requirement already satisfied: thinc<8.2.0,>=8.1.0 in /usr/local/
Requirement already satisfied: numpy>=1.15.0 in /usr/local/lib/pyt
Requirement already satisfied: tqdm<5.0.0,>=4.38.0 in /usr/local/
Requirement already satisfied: typer<0.8.0,>=0.3.0 in /usr/local/
Requirement already satisfied: srsly<3.0.0,>=2.4.3 in /usr/local/
Requirement already satisfied: requests<3.0.0,>=2.13.0 in /usr/lo
Requirement already satisfied: packaging>=20.0 in /usr/local/lib/
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8
Requirement already satisfied: wasabi<1.1.0,>=0.9.1 in /usr/local
Requirement already satisfied: setuptools in /usr/local/lib/pytho
Requirement already satisfied: langcodes<4.0.0,>=3.2.0 in /usr/lo
Requirement already satisfied: smart-open<7.0.0,>=5.2.1 in /usr/lo
Requirement already satisfied: pydantic!=1.8,!=1.8.1,<1.11.0,>=1.
Requirement already satisfied: catalogue<2.1.0,>=2.0.6 in /usr/lo
Requirement already satisfied: spacy-legacy<3.1.0,>=3.0.10 in /us
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/lo
Requirement already satisfied: typing-extensions>=4.2.0 in /usr/lo
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/pyt
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/loca
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/l
Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/li
Requirement already satisfied: confection<1.0.0,>=0.0.1 in /usr/lo
Requirement already satisfied: blis<0.8.0,>=0.7.8 in /usr/local/l

Page 63 of 75

https://pypi.org/simple
https://us-python.pkg.dev/colab-wheels/public/simple/
https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.4.1/en_core_web_lg-3.4.1-py3-none-any.whl

Requirement already satisfied: click<9.0.0,>=7.1.1 in /usr/local/
Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib
Installing collected packages: en-core-web-lg
Successfully installed en-core-web-lg-3.4.1
✔ Download and installation successful
You can now load the package via spacy.load('en_core_web_lg')

Stopwords are common words that generally do not contribute to the
meaning of a sentence.
Most search engines will �lter stopwords out of search queries and
documents in order to save space and time in their index.

Removing stopwords is not a hard and fast rule in NLP. It
depends upon the task that we are working on.
For tasks like text classi�cation, where the text is to be
classi�ed into different categories, stopwords are removed or
excluded from the given text so that more focus can be given to
those words which de�ne the meaning of the text.

All Stopwords collection including Bengali.

Filtering stopwords

nltk.download('stopwords')
from nltk.corpus import stopwords

All english stopwords list
english_stops = set(stopwords.words('english'))

print (english_stops)

words = ['The', 'natural', 'language', 'processing', 'is', 'very', 'int
filtered_words = [word for word in words if word.lower() not in english

Page 64 of 75

https://github.com/stopwords-iso/stopwords-iso

print(filtered_words)

{"haven't", 'where', 'out', 'the', 'mightn', 'down', 'shouldn', '
['natural', 'language', 'processing', 'interesting']
[nltk_data] Downloading package stopwords to /root/nltk_data...
[nltk_data] Unzipping corpora/stopwords.zip.

spacy_stopwords = spacy.lang.en.stop_words.STOP_WORDS

print('Number of stop words: %d' % len(spacy_stopwords))
print('First ten stop words: %s' % list(spacy_stopwords)[:10])

Number of stop words: 326
First ten stop words: ['hers', 'various', 'nobody', 'who', 'after

doc = nlp("Good muffins cost $3.88\nin New York. Please buy me two of t

tokens = [token.text for token in doc if not token.is_stop]

print(tokens)

['Good', 'muffins', 'cost', '$', '3.88', '\n', 'New', 'York', '.'

Adding Custom Stopwords

english_stops = set(stopwords.words('english'))

print (english_stops)

english_stops.remove('is')

Page 65 of 75

english_stops.add('natural')

words = ['The', 'natural', 'language', 'processing', 'is', 'very', 'int
filtered_words = [word for word in words if word.lower() not in english

print(filtered_words)

{'hers', 'wouldn', 'who', 'after', 'until', 'd', 'there', 'in', '
['language', 'processing', 'is', 'interesting']

The edit distance is the number of character changes necessary to
transform the given word into the suggested word.

Edit Distance

from nltk.metrics import edit_distance

print(edit_distance("Birthday","Bday"))

print(edit_distance("university", "varsity"))

4
4

Removing Punctuation

import string
import nltk

nltk.download('punkt')

puncset = list(string.punctuation)

Page 66 of 75

sentence = "Hun Sen's Cambodian can't People's Party won 64 of the 122

sentence = sentence.lower()
print(sentence)
sentence = nltk.word_tokenize(sentence)
print(sentence)
sentence = [i for i in sentence if i not in puncset] # Removing punctua
print(sentence)
sentence = [w for w in sentence if w.isalpha()] # Removing numbers and
print(sentence)

[nltk_data] Downloading package punkt to /root/nltk_data...
[nltk_data] Package punkt is already up-to-date!
hun sen's cambodian can't people's party won 64 of the 122 parliam
['hun', 'sen', "'s", 'cambodian', 'ca', "n't", 'people', "'s", 'p
['hun', 'sen', "'s", 'cambodian', 'ca', "n't", 'people', "'s", 'p
['hun', 'sen', 'cambodian', 'ca', 'people', 'party', 'won', 'of',

The goal of both stemming and lemmatization is to "normalize" words to
their common base form, which is useful for many text-processing
applications.

Stemming = heuristically removing the a�xes of a word, to get its
stem (root).

It is a rule-based process of stripping the su�xes (“ing”, “ly”,
“es”, “s” etc) from a word

Lemmatization = Lemmatization process involves �rst determining
the part of speech of a word, and applying different normalization
rules for each part of speech.

Normalizing Text

Page 67 of 75

Consider:

I was taking a ride in the car.
I was riding in the car.

Imagine every word in the English language, every possible tense and a�x
you can put on a word. Having individual dictionary entries per version
would be highly redundant and ine�cient.

Lisa ate the food and washed the dishes.
They were eating noodles at a cafe.
Don’t you want to eat before we leave?
We have just eaten our breakfast.
It also eats fruit and vegetables.

Unfortunately, that is not the case with machines. They treat these words
differently. Therefore, we need to normalize them to their root word, which
is “eat” in our example.

One of the most popular stemming algorithms is the Porter stemmer,
which has been around since 1979.
Several other stemming algorithms provided by NLTK are Lancaster
Stemmer and Snowball Stemmer.

Stemming

Page 68 of 75

from nltk.stem import PorterStemmer

stemmer = PorterStemmer()

example_words = ["python","pythoner","pythoning","pythoned","pythonly"]

for w in example_words:
 print(stemmer.stem(w))

python
python
python
python
pythonli

Lemmatize takes a part of speech parameter, "pos." If not supplied, the
default is "noun".

Lemmatization

Lemmatization using NLTK

import nltk
from nltk.stem import WordNetLemmatizer
nltk.download("omw-1.4")

nltk.download('wordnet')

lemmatizer = WordNetLemmatizer()

print(lemmatizer.lemmatize('cooking'))
print(lemmatizer.lemmatize('cooking', pos='v')) # noun = n, verb = v,

[nltk_data] Downloading package omw-1.4 to /root/nltk_data...
[nltk_data] Downloading package wordnet to /root/nltk_data...
cooking
cook

Page 69 of 75

Lemmatization using spaCy

doc = nlp('Jim bought 300 shares of Acme Corp. in 2006.')

lemma_words = []

for token in doc:
 lemma_words.append(token.lemma_)

print(lemma_words)

['Jim', 'buy', '300', 'share', 'of', 'Acme', 'Corp.', 'in', '2006

The major difference between these is, as you saw earlier, stemming can
often create non-existent words, whereas lemmas are actual words, you
can just look up in an English dictionary.

Comparison between stemming and lemmatizing

print(stemmer.stem('believes'))
print(lemmatizer.lemmatize('believes'))

believ
belief

The English language is formed of different parts of speech (POS) like
nouns, verbs, pronouns, adjectives, etc. POS tagging analyzes the words in
a sentences and associates it with a POS tag depending on the way it is
used.

Part-of-speech Tagging

Page 70 of 75

Full tag list.

Penn Bank Part-of-Speech Tags

from nltk.tokenize import word_tokenize
from nltk.tag import pos_tag

nltk.download('averaged_perceptron_tagger')

words = word_tokenize('Jim bought 300 shares of Acme Corp. in 2006.')

tagged_words = pos_tag(words)

print(tagged_words)

Page 71 of 75

https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fwww.ling.upenn.edu%2Fcourses%2FFall_2003%2Fling001%2Fpenn_treebank_pos.html

[nltk_data] Downloading package averaged_perceptron_tagger to
[nltk_data] /root/nltk_data...
[nltk_data] Unzipping taggers/averaged_perceptron_tagger.zip.
[('Jim', 'NNP'), ('bought', 'VBD'), ('300', 'CD'), ('shares', 'NN

import spacy

nlp = spacy.load("en_core_web_sm")
doc = nlp('Jim bought 300 shares of Acme Corp. in 2006.')

for token in doc:
 print(token.text, token.pos_, token.tag_)

Jim PROPN NNP
bought VERB VBD
300 NUM CD
shares NOUN NNS
of ADP IN
Acme PROPN NNP
Corp. PROPN NNP
in ADP IN
2006 NUM CD
. PUNCT .

Named-entity recognition is a subtask of information extraction that seeks
to locate and classify elements in text into pre-de�ned categories such as
the names of persons, organizations, locations, expressions of times,
quantities, monetary values, percentages, etc.

NE Type and Examples:-

ORGANIZATION - Georgia-Paci�c Corp., WHO
PERSON - Eddy Bonte, President Obama

Named-entity Recognition

Page 72 of 75

LOCATION - Murray River, Mount Everest
DATE- June, 2008-06-29
TIME - two �fty a m, 1:30 p.m.
MONEY - 175 million Canadian Dollars, GBP 10.40
PERCENT - twenty pct, 18.75 %
FACILITY - Washington Monument, Stonehenge
GPE - South East Asia, Midlothian

from nltk import pos_tag, ne_chunk
from nltk.tokenize import wordpunct_tokenize

nltk.download('maxent_ne_chunker')
nltk.download('words')

sent = 'Jim bought 300 shares of Acme Corp. in 2006.'

print(ne_chunk(pos_tag(wordpunct_tokenize(sent))))

[nltk_data] Downloading package maxent_ne_chunker to
[nltk_data] /root/nltk_data...
[nltk_data] Unzipping chunkers/maxent_ne_chunker.zip.
[nltk_data] Downloading package words to /root/nltk_data...
[nltk_data] Unzipping corpora/words.zip.
(S
 (PERSON Jim/NNP)
 bought/VBD
 300/CD
 shares/NNS
 of/IN
 (ORGANIZATION Acme/NNP Corp/NNP)
 ./.
 in/IN
 2006/CD
 ./.)

import spacy

Page 73 of 75

nlp = spacy.load("en_core_web_sm")
doc = nlp("Jim bought 300 shares of Acme Corp. in 2006.")

for ent in doc.ents:
 print(ent.text, ent.start_char, ent.end_char, ent.label_)

Jim 0 3 PERSON
300 11 14 CARDINAL
Acme Corp. 25 35 ORG
2006 39 43 DATE

Page 74 of 75

Session 07

Goals:

1. Evaluation of the project.

 Evaluation Criteria:

1. Project Design - 10 Marks
2. Project Report - 10 Marks
3. Project Presentation - 10 Marks

Page 75 of 75

