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Numerical solution of Compton source term
in Fokker-Planck equation: Application to

radiotherapy

Taposh Kumar Das •

Abstract: In this article we adopt the numerical solution and calculating
time of Compton source term of the Fokker-Planck equation. The calcu-
lation time is much important for dose calculation of radiotherapy and it
is mostly dependent on the calculating time of Compton source term. The
Fokker-Planck equation is the approximation of the Boltzmann transport
equation for electrons. The number of electrons are needed to calculate the
dose of radiotherapy for cancer treatment. We get this number of electrons
by solving the Fokker-Planck equation.

Keywor-ds: Compton source term, Boltzmann Transport equation, Fokker-
planck. Radiotherapy, Dose calculation, Differential cross section, Moller-
coefficient, Molt coefficient, stopping power

Introduction

For cancer treatment the high energy photon radiotherapy is very much useful in the
present time. So, it is most important to calculate the expected dose distribution,
before start the treatment of the patient, i.e., the distribution of absorbed radiative
energy in the patient, has to be calculated. It depends on a CT scan (CT= computed
tomography) of the tumour region and the treatment plan is tailored to the local ge-
ometry of the tumour and the surrounding tissue to guarantee the best possible close.
If the dose of radiotherapy in the tumour tissue is not very low then we can expect a
curative effect. l3ut if the dose is so high then the many healthy tissue surrounding
the tumour will be destroyed or they will not be able to protect or avoid the undesir-
able side effect from the high dose. Therefore, one of the main parts for a treatment
plan is the perfect dose calculation before bcgiuiug the treatment for effective the real
treatment .

• Departmrnt of Arts and Sciences, Ahsanullah University of Science and Technology. Email: taposh
_ math~yahoo.com
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We can find the exact dose calculation for photon and electron radiation by well
known physical principles of interaction of radiation with human tissue by the transport
of energy into the patients body that can be modelled and calculated by an appropri-
ate Monte Carlo (MC) algorithm (Andreo P,1991). If we work carefully then it leads
to exact results of the dose distribution in arbitrary geometries and nowadays highly
developed MC codes for dose calculations are available but the computational time is
very high in this case. Therefore this process is going to unattractive position day by
day in clinical use.

The other alternative approach to circumvent the drawback of the MC codes called
kernel models (Ahnesje and Aspradakis,1999) oITer a reliable and fast. alternative for
most types of radiation treatment. The pencil beam models are probably most in use
and these models are based on the Fermi-Eyges theory of radiative transfer (Rossi
and Greisen,1941) & (Eygcs, 1948). Originally introduced for pure electron radiation
by Hogstramet Mills and Almond (1981) and later generalized to photon radiation by
(Gustafsson, Lind and Brahme, 1994)& (Ulmer and Harder, 1995), too. Although the
result was good but the pencil beam models fail in complicated setting like air cavities
or other inhomogeneities.

The third access for dose calculation attracted in the last few years is the deter-
ministic Boltzmann equation of radiative transfer based on the physical interactions of
radiation in tissue. A mathematical model can be developed that allows in principle an
exact dose calculation like as MC models. The recent studies for pure electron radiation
were mostly done by Borgcrs and E.W.Larsen (1996). Electron and combined photon
and electron radiation were studied by Tervo et. al.(1999). Tervo and Kolmonen(2002)
in the context of inverse therapy planning and Zhengming et al(2004) restricted their
model to one dimensional slab geometry. The Boltzmann Transport equation (BTE)
for photons are already solved numerically by Taposh (2012). It is very difficult to
solve the Boltzmann Transport equation for electrons. Therefore we choose the Fokker
planck approximation of the BTE for electrons. The compton source term is the part
of the Fokker planck equation.

In this paper we represent the numerical result and the calculating time of the
Compton source term. Here the time is very important for the dose calculation of ra-
diotherapy because the time of dose calculation is mostly dependent on the calculating
time of the Compton source term.

The Boltzmann model for coupled photon and electron transport
(HartJnut et.aI.2006)

The photons and electrons move with high velocities so all the process can be regarded
as time independent and the all calculations are done relativistic using the relativistic
formulae for energy and fully relativistic scattering cross section. For convenience all
energies are scaled by the rest energy of the electron mc2 = 0.511 MeV, m being the
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rest mass of the electron c is the velocity of light.

Let 1/J-y(r,H-y,t-y)cos8dAdn-ydt-ydt be the number of photons that move in time dt
through area dA into the element of solid angle dfl-y around fI-y with an energy in the
interval (t-y, t,. + dt-y). 8 is t.he angle between direction fI-y and outer normal of dA.
fI-y= (sin 'P-ycos v-y, sin 'P-ysin {)-y, cos 'P-y)T
where 'P-y is the zenith angle and v-yis the polar angle in a Cartesian coordinate system.
A similar definition holds [or 'Pc(r, fie, te) COS 8dAdfledtcdl being the respective phase
space ftuence of electron, te their kinetic energy and fie their direction of ftigth.
The transport equation for photons is

n,..V1/J,(r, n, t-y) =~c(r) (YO j' (h:,-y(t~, t" n~.n-y)1/J-y(r, n~, t~)dn~dt~Jo S2

- Pe(r)O'g'~(t-y)1/J-y(r, n-y, t,) (1)

where pc is the electrons density of the medium and (jc.-y is the scattering cross section
of the photons, differential in angle and energy for comptons scattering of photons and
O'~~ (t,.) is the total compoton scattering cross section of photons.
The transport equation for electrons is

+ Pe(r) foo r (jM(t~, te, n:· ne)1/Je(r, n~, t~)dn~dt~
e, JS21

4

+ Pe(r) fOO r (jM,6(t~, te, n~· ne)1/Je(r, n~, t~)dn~dt~
es J S21

4

+ pc(r) r O'Mott(r, te, n~. ne)1/Je(r, n~, te)dn~JS2

- Pe(l·)O'~:t·(te)We(r,'ne, te)
- pc(r)O't~~tt(r, te)1/Je(r, ne, tc) (2)

where Pc is the density of atomic cores in the medium and (jC,e is the scattering cross
section of electrons differential in angle and energy for Compton scattering of electrons.
(j M is the scattering cross section for primary electrons differential in angle and energy
[or M011erscattering and (jM,6 is the cross section for secondary electrons (,delta-rays').
The scattering cross section for Mott scattering O'Mottis only differential in angle, be-
cause Mott scattering is an elastic scattering. The total cross section for M011er and
Mott scattering are O'~tand O'~;tt respectively.

The angular integration in the electron equation arc restricted by the kinematics of
the scattering events. We define
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tt

1 127r1-f( ip ; v)dH := 2 f( <p. tJ) siwOdvd<p
s' 0 0;}

7r

r f( ip, 15)d0.:= r27r
t ; f( ip, v) sin 1'!d1'!d<pls· ~ ~!

tt

;'. f( ip, iJ)d0.:= t" 1~2f( .p, iJ) sin 1'!dtJd<p
.5

1
.10 .I",

4

where the axes of reference are defined by 0.,. and 0.c in (1) and (2) respectively.

The energy range will be from 0 to infinite. We denote the patients surface 0. and
subdivided it into a part that is irradiat.e by photons and electrons I' and the rest. of
the surface A(i.e., 0. = r UA.).
we assume that the energy spectrum and the angle distribution of photons and electrons
are known on I'. Then the boundary condition are

"l/J,.(r, n,., (,.) lr= 1Jl~(S, n,., (,.);
"l/J,.(r, n,., E,.) 1/\= 0;

1/;c(r,nc, Ec) [r= 'l1~(S, nc, (c);
"I/)c(r, nc, cc) 1/\= 0;

for
for
for
for

(3)

nr and n/\ begin the outer normal of I' and A respectively. 8 is the position in t.he two
dimensional surface that accounts for intensity modulation in the irradiated surface.
Boundary conditions are only formulated for fluencies that are going into the patients
body, because multiple scattering inside the body can lead to outward flucncics.
The transport equation (1),(2) and the boundary condition (3) model the transport of
photons and electrons in heterogeneous biological tissue. Different media like muscle
and bone are modelled by different densities of electrons fie, atomic cross fie and mott
cross sections(which depend on the atomic number Z=Z(r) of the irradiate media). 80
heterogeneous media are included into the model from the beginning and will be kept
in mind in later asymptotic development.

Absorbed dose
From the above discussion we have seen only one type of scattering events leading to
energy deposition in the irradiated medium namely Meller scattering. We see that by
i:1 Moller scattering event i:1 free electron transfers energy and momentum to i:1 bound
electron, so that the latter can leave the molecule and then the binding energy of the
electron has been transferred to the molecule. We have seen the energy balance in be-
low: let €: be the kinetic energy of primary electron before scattering and an electron at
rest his kinetic energy O. Let, after scattering, the kinetic energy of a primary electron,
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secondary electron and an ionized molecule are Ee, Eo and EB respectively. Therefore
the energy balance will be;

(4)

We can not understand which electron is primary or which electron is secondary. But
by definition after scau.ering, the energy of primary electron is greater than the energy
of the secondary electrons, so we can write the following two equations:

f > Ec - EB
c - 2 (5)

(6)

we consider the lower bound of energy of electron Es that is also relevant for dose
calculation. Also we have to study the energy transfer process in a Moller scattering
event and to sum over all possible combinations of outgoing and incoming energies and
direction of electrons in Moller scattering for calculating the absorbed dose. Here we
have two different contributions 10 the absorbed dose:
(i) If Eo S; Es or Eo E [0, Es], i.c., delta electrons will not transport and it absorbed lo-
cally. So, we see that the ionization energy of the molecules EB and the kinetic energy E6

of the secondary electrons contributes to the absorbed dose. Therefore, the energy loss
(E: - Ec) of the primary electrons enters into the dose formula. The limit of the incoming
electrons, E~ E [Es, inf), and for the scattered primary electrons, Ec E [E~ - e, - EB, E~ - EB]

because we have got from ?q(4) Ec = E~ - Eel - EB where tel E [0, Es].

(ii) If E6 ;::: Es or E6 E [Es, Ec ~ EB], i.c., delta electrons are transported, so in this case

only the ionization energy E; of the molecules contributes in the absorbed dose, i.c.,
EB = [E~ - Ee] - E6 enters in to the dose formula.

The limit of the energy of the in,corp.ing electrons is E~ E [Es,OO]. We get from eq( 4)

Ee = E: - Eel - EB. Here, Eo E [Es, ~c ~ EB]. Therefore we get the energy limit for the

t ...- tB '
scattered primary electrons.c., E [_C-

2
-, Ee - Es - EB]'

Therefore, we can get the following exact formula for the absorbed dose:
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where mc2 being the rest energy of the electron to rescale energy, p the local density
of the medium and T is the duration of the irradiation. If all quantities are calculated
in 81 units this formula leads to 81 unit J kg-lor Gray( Gy )for the dose.
13y the asymptotic development we can write this equation in the following form;

,
mc2pc(r) J J 1= ;<o-<a, - r , I " rD(r) = (.) T ., !._. [Ee-Ec]o-Af(Ee,Ec,llc·llc)1j)c(r,nc,Ec)dEcdEcdllcdncov .<;2 ,<,'1 e; ~

4
(8)

To solve the equation (8) we need the number of electrons ('l/Jc). By solving the equation
(2) we can fine this electrons. It is very difficult to solve this Boltzmann transport
equation for electrons (2) directly. 80 we choose a Fokkcr-Planck development in
the standard way (Pornraning, 1(92) to find this number of electrons. The resulting
asymptotic equation is

ne' '\71I)e(r, ne, ce) - [TMott(r, ce) + TM(r, ce)]L1/Je

- aa ['S'M(r,ce)'l/Je] = Q(r,ne,ce),
Ce

(9)

where L is the Laplace operator on the sphere which is given by

J-le = cos'l3e· (10)

(11)

Now we use the Fokker-Planck approximation that lead the final result for the
asymptotically developed absorbed dose:

(12)

with <I>(r, Ec) := f,2'l/JC(r, n~,cc)dn~.
Here, Q is the Compton source term (T.K.Das and 8.U.8uma, 2013)

(13)
where

C = C(n~) = ne . n~ and

e. = te + JC2Ee(2 + Ee)
-y 2C2 - Ce + C2ce .

(14)

(15)
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Figure 1

The Matlab code

We have made a MATLAB code to solve the Compton source term. This total code
contains 16 m-files. We use the the following names for those m-filcs are PSIO, PSI!,
PSI2, PSI3, PS1, PS2, PS3, H1, H2, H3, gO, gl,g2, CBP, EX and main2. We discuss
about the m-files in the following:

1. In main2 we give the necessary data (input data) and get output in here.
For input data we use some symbol ill this rn-file which are L, ED, R, OME, E,
HW, Nx, Ny, Nx1, Ny1, Nx2, Ny2, NW1, NW2 and NW3. All the notations and
the meaning of those are following:

(a) L=[Lx,Ly,Lz], where Lx, Ly and Lz are the length of three edges of the cube
(Figure 1).

(b) ED is the length of edge of irradiate square on the upper surface of the cube.
(c) R is the point inside the domain where we want to calculate the number of

photons (in the Figure 1 point R is R(t)).

(d) We calculate the number of photons at a fixed direction. OME is the unit
vector in that direction. In the Figure 1 it is fl,.

(e) E is the energy of photon.
(f) In the cube (domain) we use two parts one of that is water and the other is

air. HW is the length of height of the water part.
For calculating 1/J~1) (T.K. Das, 2012, p-60) we need to calculate g~O) n (>')" ~
((T.K. Das, 2012, p-66)) and in the formulation of g~;,n)>')we see that
there are two integrations one for polar angle and one for zenith angle. Here
we use y for polar angle and x for zenith angle.
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(g) Nx is the division number of the range of x of the domain of the integral in
the formulation of g~U)n (.>.).

1" ,

(h) Ny is the division number of the range of y of the domain of the integral in

the formulation of Y~~.n~ (.>.).

for calculating 1/A2
) we need to calculate g~1) n (.>.) and in the formula of

"t, ,

g~l) n (.>.) has two integrations one for polar angle and one for zenith angle.
1" ;

Here we use yl for polar angle and xl for zenith angle.

(i) xl is the division number of the range of xl of the domain of the integral
in the formulation of g~~)!l; (A).

(j) Nyl is the division number of the range of yl of the domain of the integral
in the formulation of g~l) n (X).

1" -r

We use x2 and y2 for the zenith and polar angle respectively in the integral
involving in the formula of g~2) n (.>.) to calculate 1j;~3).L," "Y

(k) Nx2 is the division number of the range of x2 of the domain of the integral
ill the formulation of g~;,n., (X).

(I) Ny2 is the division number of the range of y2 of the domain of the integral
in the formulation of g~l) n (.>.).

1" ,

We observe that the value of 1j;~1) at a point inside air is much smaller than
the value of 1j,~I) at a point inside water. It is almost zero. So. in our
l\IATLAB code we use only the points which are inside in water to calculate
1j;~i). where i = 1. 2. 3, .... i\f (T.K.Das. 2012, p-Gl ).
We see in the Ph.D thesis paper(T.K.Das, 2012, p-Gl ) there is an integration
with respect to l and the limit of this integration is from a to ,\. But by the
above discussion we will take the part of .>.which inside in the water.

(m) NW1 is the number of divisions of the water part ofX which is the range of
the integral domain illvol~ed ill the formula of 'If.~J).

(11) NW2 is the number of divisions of the water part ofA which is the range: of
the integral domain involved in the formula of '!p~2).

(0) NW3 is the number of divisions of the water part of .>.which is the range of
the integral domain involved in the formula of 1j;~3).

2. In cnp we find the boundary point r*(Figure 1).

3. III EX we obtain the exponential pal t of the formula of 1j;~U)(r(/\), 01" £1') (T.K.Das,
2012, p-GO,Eq(4.12)). In the exponential part, there exist a line integral and the
limit of this integral is from 0 to .>.(.>.is the distance from boundary point r* to
R(t), see Figure 1). If the domain that contains the sigment [0,'>'1 is heteroge-
neous then the electron density is different for different media. In making this
program we have taken this fact into consideration.
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4. In PSIO, we solve the number of non-interacting photons by using CBP and EX.

5. In gO we find g~O) II (A) by using this PSIO. Here we use the support (mentioned
-y, ~

in previous section) to calculate the integration of gO.

6. To calculate gO we need the value of integrand at the limiting points of the domain
of integral. In HI we fine! this value.

7. In PSIl we find the number of one time interacting photons by using gO and EX.

8. To find PSIl, we need the value of the integrand involving ill PSIl at the limiting
points of the domain of the integral. We calculate this value in PSI.

9. In gl we find g~l) n (A) by using this PSIl. Here we use the support (mentioned
-y, ~

in previous section) to calculate the integration of g1.

10. To calculate gl we need the value of integrand involving in the formula of
g~l) n (A) at the limiting point of the integral domain. In H2 we find this value.

-y, ~

11. Tn PST2 we find the number of two time interacting photons by using gl and EX.

12. To find PSI2, we need the value of the integrand of the integration involving in
PSI2 at the limiting points of the integrating domain. We have calculated that
value in PS2.

Similarly, we calculate the g2, PSI3, PS3 and H3 like as gl, PSI2, PS2 and H2 re-
spectively. In main2 we give the necessary data (input data) and get output from
here.

Results and Discussions

To calculate the integration numerically we use the 2D composite trapezoidal rule.
Here we check that our numerical code regarding this part works well.
Let Nx and Ny be the number of divisions of the range of x and y respectively. We
give the following example. .
We calculate by hand and see that the value of

3 311 (x2 cos(y) + y2 sin(x))dxdy = 7.1928.

The Table 1 gives the numerical result of the integration (16) which is solved by
2D composite trapezoidal rule.

We have taken the unit vector

(16)

[
-0.05 -01.56]0=0-----

-y , 1.5608' 1.5608 ' (17)
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Nx Ny Numerical value Error
10 10 7.1977 0.0129
20 20 7.1896 0.0032
30 30 7.1914 .0014
40 40 7.1920 7.6061e-004
50 50 7.1923 4.7000e-004
60 60 7.1925 3.1217e-004
70 70 7.1926 2.1710e-004
80 80 7.1926 1.5525e-004
100 100 7.1927 8.2618e-005
150 150 7.1928 1.0890e-005

Table 1

Nx2 Ny2 Q Compton source term Time
2 2 .3253 30 sec.
3 3 .7577 50 sec.
4 4 1.1291 75 sec.
5 5 1.229 100 sec.
6 6 1.2182 120 sec.
7 7 1.2093 209 sec.

Table 2

then the approximate value of the Compton source term at [1.5,1.45,1.44] going to,
this direction are given in the following Table 2. We observe that the value of integral in
the formula of the compton source term is a good approximation of the exact value for
(Nx, Ny, Nxl, Ny1, Nwl, Nw2) c!= (4,7,8,8,12,1). All the mentioned cross sections
and the stopping power have been shown in the appendices.

Conclusion

From the Table 2 we see that the approximate value of the compton source term is
1.2 and the calculating time is near 100 seconds (Row 5 of Table 2), which is not so
high. From the equation (12) of dose calculation we see that the number of electrons
is needed for the dose which we can get by solving the equation (2) of Boltzmann
Transport equation for electrons. It is difficult to find the number of electrons by cal-
culating the equation (2) therefore we have to choose a Fokkcr-Planck development in
tho standard way (Pomraning, 1992) to find this number of electrons.

This paper represent the approximate numerical value and calculating time of the
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Compton source term of the Fokkcr-Planck development of the Boltzmann transport
equation for electrons which is needed for the numerical solution of this Fokkcr-Planck
development to calculate the dose of radiotherapy for cancer treatment.
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Appendices

We have used the Compton scattering cross section in our Boltzmann model for solving
the system of photon equation. The differential scattering cross section are differential
in energy and in solid angle. The Compton scattering cross section can be decomposed
into a product of a cros1j section, that is only differential ill solid angle or energy and a
Dirac delta function. Total cross section is calculated by integrating the double differ-
ential cross section with respect to energy and solid angle. Because the Delta functions
one integral is always trivial.

To represent the cross-section we have used the quantities with a prime for incoming
particles and the quantities without prime for outgoing particles. We have used the
following symbols;
(a) for incoming energy we have used E~ ;

(b) for outgoing energy we have used t-y ;

(c) for incoming direction of photon we have used n~;
(d) for outgoing direction of photon we have used n-y ;
(e) for incoming direction of electron we have used n~;
(f) for outgoing direction of electron we have used ne ;
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Appendix A

Differential cross section for Compton scattering of photons

Literature: (C.M.Davisson, R.D.Evans, 1952)

(0.1)

with

" 1'~ [ 1 ] 3 [ 2 t~ (1 - cos 19,? ]
(Jc - (f ,!L .n )= - 1 + cos 19 + ---"--;-----:-7

·1 -y 1 -y 2 1 + t~(1- cos19-y) -y 1 + t~(1- cos19-y)
(0.2)

(0.3)

Total cross section for Compton scattering of photons

Literature: (Davisson and Evans, 1952)

tot () 2 [1 + f-y (2(1 + f-y) 1 ( )) 1 ( ) 1 + 3f-y ]
(Jc,-y f-y = 211'1'c --2 - - -In 1 + 2f-y + -2 In 1 + 2f-y - ( 2)2

f-y 1 + 2t-y t-y f-y 1 + fl'

(0.4)

Differential cross section for Compton scattering of electrons

Calculation based on (Davisson and Evans, 1952)
,

o-C,e( f~, fe, n' e . ne) = ITC,e( t~, fe, n', .ne)i\'C,e( t~, fe) (0.5)

with

41';(1 + f~? 1
(0.6)

cos319c (a(E~,19c)+2f~)2

X [1- a(E~~'!ge)+ a2(f~,19c) + a(f~,1ge)(a(E~;,19c)+ 2f~)] (0.7)

(0.8)

where
(0.9)
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Differential cross section for M01Ier scattering of primary elec-
trons, i.e.,

Ec > (E~ - EB)/2

Literature:( Kawrakew and Rogers,2002) and (Nachtmann,1986)

with

Ec E~ + 2) ( I ) /,--,) , Ec > Ee - EB 2.
Ec Ec + - (0.12)

Differential cross section for Meller scattering of secondary elec-
trons, 1.e.,

fc < (f~ - fB)/2
Literature:(Kawrakew and Rogers,2002) and ( Nachtmann, 1986)

with

Differential cross section for M01Ier scattering of electrons

Calculation based on ( Kawrakew and Rogers, 2002)& (Nachtmann, 1986)

1(,"-,n)/2
O"~lt(Ec) = O"M(Ec, E~)dE~.

'13

Two lower limit of integration is due to the fact that the primary electron can only be
scattered if at lest the binding energy EB is transferred to the secondary electron (of a
tissue molecule). Besides the evident motivation of this choice based on our model, this
is a standard way to avoid singularities in calculating total cross section(Williams M M
R, 1979,section 5.1). The upper limit of integration is due to the fact that the primary

(0.16)
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electron has larger energy than the secondary electron and that the binding energy EB

was introduced into the scattering processes( usually the upper limit is t~/2) .One gets

Differential cross section for Mott scattering of electron
Literature: ( Mott and Massey, 1965) & (Lehmann, 1(77)
Ct ~ 1/"137 is the fine structure constant, Z is the atomic number of the irradiate
medium. Z depends on r to account for heterogeneous media.

with (32 = \ct~i)2). The most approximation is justified, because in the energy range
studied here and for typical low-Z media like water only small errors are made.
To avoid the singularity at {Je = Oa screening parameter 17 can be introduced in [?] that
models the screening effect. of the electron and the atomic shell:

with

(0.21)

Total cross section for Mott scattering of electron

7r(Z(r)l'e)2 [ (Ee + 1)2 1
at7~tt(r, Ec) () 2 + ()Ee Ee+2 (7rCt)2Z3(r)(1+1](r,tc)) 1+1] r,Ee

+ In 1](r, Ec) -In(l + 1](r, EC))]. (0.22)
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Appendix B

The M011erstopping power SM
Instod of using the definition of Pomraning(Hl92)it. is convenient to use the standard
definition of the stopping power:

(0.1)

Of course oath dcfiuitious are equivalent.

This integral can be evaluated analytically, too, and one gets
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